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ABSTRACT 

Endometriosis is an enigmatic disease that is associated with severe symptoms and consequences 

such as total hysterectomy. Upwards of 10% of women of reproductive age have endometriosis, 

most of whom are afflicted with chronic pelvic pain and/or infertility. Despite many treatment 

options available to endometriosis patients, there is no cure for this condition and recurrence of 

symptoms is extremely common. In CHAPTER 1, we describe the mechanisms involved in 

endometriotic pain and the currently available treatment strategies. Our laboratory has provided 

evidence for the role of oxidative stress in the etiology of endometriosis and its associated pain. 

In this dissertation research, we wanted to specifically understand the mechanistic role for the 

abundance of oxidized lipoproteins (ox-LDLs) in the peritoneal fluid (PF) of women with 

endometriosis. We hypothesize that the ox-LDLs and the peritoneal milieu play a dynamic role 

in endometriosis. These components are epigenetic modulators of inflammatory and nociceptive 

processes. Our IRB-approved study used eutopic and ectopic endometrial tissues and peritoneal 

fluid from patients with (endo) and without (control) endometriosis (IRB-[114954-20](9074)). 

Tissue sources included eutopic endometrium of control patients (EuNN), eutopic endometrium 

from patients with endometriosis (EuYY), and ectopic tissue from women with endometriosis 

(EcYY). Peritoneal fluid (PF), was collected from patients categorized as having neither 

endometriosis nor pain (NN-PF), endometriosis and pain (YY-PF), or endometriosis without 

pain (YN-PF). In CHAPTER 2, we provide evidence for the ability of the ox-LDL components 

of PF to induce inflammation and nociception in Sprague-Dawley rats (IACUC 485[397498-7]).  

The ox-LDL nociceptive and inflammatory responses were similar to that observed with PF from 

women with endometriosis and pain. Antioxidants were able to alleviate these nociceptive 

responses. In CHAPTER 3, we provide a mechanism by which these ox-LDL components 
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induce inflammatory and nociceptive responses. Global miRNA expression was measured in 

tissues and PF-treated cells and key miRNAs and their targets were validated by qPCR. Several 

miRNAs (e.g. isoforms of let-7, miR-98, and miR-374) and their gene targets (e.g. IL-10, Mip1α, 

and MCP1) were differentially expressed in both ox-LDL and endo PF-treated cells. In 

CHAPTER 4, an epigenetic mechanism involving Enhancer of zeste 2 (EZH2) is proposed to 

contribute to endometriosis and associated pain. RT-qPCR and Western blots were used to 

measure the expression of key epigenetic factors in patient tissues and PF-treated cells while 

ChIP-qPCR identified interactions between upstream regulator Jumonji protein 2 and epigenetic 

genes. This study provides mechanistic evidence for oxidized lipoprotein components playing a 

role in endometriosis associated pain. We also provide evidence for epigenetic changes in the 

endometriosis pain. Future studies will test drugs that target oxidation and/or epigenetic 

pathways in animal models of endometriosis and patients with endometriosis.  
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CHAPTER 1 

ENDOMETRIOSIS-ASSOCIATED PAIN 

This manuscript is a revised version of Power over pain: A brief review of current and novel 
interventions for endometriosis-associated pain 
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Fax: (304) 696-7391 
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ABSTRACT 

 An estimated 10%-15% of women of reproductive age suffer from endometriosis and can 

be plagued with one or many forms of pain. It is no mystery that endometriosis is an extremely 

complex disease, with several factors leading to the predominant symptoms of infertility and 

pain. Although there are currently multiple options available for treating endometriosis-

associated pain, none can completely relieve the symptoms. This review both highlights the 

current trends in treatment of endometriosis-associated pain and explores some novel options 

available for therapy directed towards oxidative stress, inflammation and nociceptive 

mechanisms of pain. A PubMed search was conducted to identify the most recent publications on 

the topic of pain associated with endometriosis, and further research was performed to clarify the 
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mechanism by which current treatments target pain. Lastly, the authors include a review of 

pharmacological options at the forefront of endometriosis research. A more comprehensive 

understanding of the mechanisms behind endometriosis-associated pain will ultimately lead to 

more effective treatments and improved prognoses for patients. 

INTRODUCTION 

Endometriosis is defined by the presence of endometrial tissue in ectopic locations, 

typically in or around the peritoneal cavity (Burney & Giudice, 2012; Ciarmela, Critchley, 

Christman, & Reis, 2013; Vercellini, Vigano, Somigliana, & Fedele, 2014). While the exact 

prevalence of endometriosis is likely underrepresented, most sources cite a minimum of 10% of 

women in their reproductive years (Ciarmela et al., 2013; Platteeuw & D'Hooghe, 2014; Young, 

Brown, Saunders, & Horne, 2013). While 20-25% of endometriosis patients are asymptomatic 

(Bulletti, Coccia, Battistoni, & Borini, 2010), others experience a number of debilitating 

symptoms. The most predominant symptoms are infertility and pelvic pain, the latter being 

considered the "classic symptom" of the condition and the primary reason for medical visits by 

patients with endometriosis (Fraser, 2010). In 1985, the American Fertility Society (AFS) made 

its latest revisions to the classification system for endometriosis ("Revised American Fertility 

Society classification of endometriosis: 1985," 1985), followed by the ASRM classifications 

proposed in 1996 ("Revised American Society for Reproductive Medicine classification of 

endometriosis: 1996," 1997). At this time, these committees were aware of the need to 

incorporate pain into their classification systems and recognized that attempts were being made 

to link pain to the location and/or severity of endometriosis ("Revised American Society for 

Reproductive Medicine classification of endometriosis: 1996," 1997). However, it is likely that 

at that time, the association between pain and endometriosis had not been fully elucidated. At the 
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time of the AFS revisions, neither pain nor the etiology of pain associated with endometriosis 

was taken into account (Roberts & Rock, 2003). Hence this lack of knowledge is now 

problematic, considering the inability to determine the etiology of this associated pain is the 

primary roadblock in designing and providing effective treatment for patients with 

endometriosis. This review will provide a brief overview of the current treatment options 

available for endometriosis-associated pain (the readers are encouraged to read recent in depth 

reviews (Brown & Farquhar, 2014; Kobayashi et al., 2014; Morotti, Vincent, Brawn, Zondervan, 

& Becker, 2014; Platteeuw & D'Hooghe, 2014; Practice Committee of the American Society for 

Reproductive, 2014; Stratton & Berkley, 2011) on this topic). The major emphasis of this review 

is to address some of the new and novel pain mechanisms involved in the etiology of pain in 

endometriosis, which may help in developing better treatment options for this disease.  

CURRENT TREATMENTS AND THEIR EFFECTIVENESS IN TREATING PAIN 

Hormonal Therapies 

Endometriosis has long been considered a hormonal disorder, with high levels of 

estrogen contributing to the development and growth of endometriotic lesions (Arici, Tazuke, 

Attar, Kliman, & Olive, 1996; Giudice & Kao, 2004; Kitawaki et al., 2002). At the molecular 

level, endometriosis-related inflammation is attributed to excessive estrogen production, as it 

promotes the secretion of several inflammatory cytokines and growth factors as well as 

prostaglandin E2, or PGE2 (the cyclooxygenase product and a major pain inducing molecule) 

(Ferrero et al., 2014). Oral contraceptives (OCs), commonly referred to as "the pill," work to 

block ovulation in conjunction with deprivation of estrogen to the endometrium and 

endometriomas (Maia, Haddad, & Casoy, 2013). This mechanism relieves pain for as long as the 

active pills are being consumed, with the pain often returning upon cessation (Practice 
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Committee of American Society for Reproductive, 2008). Side effects are relatively minor, but 

OCs do, of course, prevent conception.  

Progestins and progesterone can be administered orally, by intramuscular depot injection, 

or via an intrauterine device (Schweppe, 2012). It has been proposed that the mechanism of 

action of progestins in relation to endometriosis involves reducing metalloproteinases and 

growth factors (Schweppe, 2012) as well as inducing atrophy of the endometrial tissue. Lesser 

discussed mechanisms associated with progestins and progestogens are the suppression of 

inflammatory reactions and estrogen in and around endometriomas (Schweppe, 2012). The 

introduction of dienogest has allowed for further research into progestogens as the first-line of 

treatments for endometriosis and its associated pain (Petraglia et al., 2012; Strowitzki, Marr, 

Gerlinger, Faustmann, & Seitz, 2012). While use of progestins are effective means of relieving 

endometriosis-related pain, the drawback is that they also prevent pregnancy and any 

breakthrough bleeding is often accompanied by pain.  

GnRH Analogs and Danazol 

GnRH agonists such as leuprolide acetate are more effective at inducing amenorrhea than 

the afore-mentioned treatments and also promote decidualization and atrophy of the endometrial 

tissue (Practice Committee of the American Society for Reproductive, 2014). For this reason, a 

growing number of studies are being performed to investigate new GnRH agonist options. A 

recent study by Leone Roberti Maggiore and colleagues detailed the role of triptorelin in treating 

endometriosis-associated pain (Leone Roberti Maggiore et al., 2014). As with all GnRH 

agonists, triptorelin depresses this pain by depriving the lesions of the estrogen that allows them 

to flourish (Gargiulo & Hornstein, 1997; Leone Roberti Maggiore et al., 2014). Unfortunately, 

the hypoestrogenic environment caused by these treatments leads to a menopause-like state in 
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the patients (Leone Roberti Maggiore et al., 2014; Practice Committee of American Society for 

Reproductive, 2008). To combat this, the concept of adding estrogen/progestogen to this 

treatment has now become the gold standard ("Practice bulletin no. 114: management of 

endometriosis," 2010; Practice Committee of the American Society for Reproductive, 2014; Zupi 

et al., 2004). 

Danazol is an androgen that prevents the release of steroidal hormones. By lowering the 

levels of estrogen available to endometriotic lesions, danazol leads to their atrophy and lowers 

endometriosis-associated pain (Barbieri, 1990; Selak, Farquhar, Prentice, & Singla, 2007). 

However, because this drug is an androgen, it also causes undesirable side effects such as 

hirsutism, acne, and weight gain. In terms of endometriosis pain relief, danazol is as effective as 

GnRH analogs (Selak et al., 2007).  

Aromatase Inhibitors 

Aromatase is the key enzyme in the synthesis of estrogens from androgens. Aromatase 

inhibitors, while not approved by the US Food and Drug Administration for endometriosis, are 

thought to alleviate endometriosis-associated pain with their ability to lower recurrence rates or 

postpone recurrence more effectively than other first-line alternatives (Practice Committee of the 

American Society for Reproductive, 2014). However, to combat some adverse effects of these 

drugs, adjuvant therapies such as progestogens and OCs have been shown to improve pain in 

women of reproductive age (Ailawadi, Jobanputra, Kataria, Gurates, & Bulun, 2004; Amsterdam 

et al., 2005; Pavone & Bulun, 2012). In post-menopausal endometriosis patients, there is 

evidence that an aromatase inhibitor alone may be the better option for pain treatment (Pavone & 

Bulun, 2012). 
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Analgesics 

Non-steroidal anti-inflammatory drugs (NSAIDS) block the action of cyclooxygenase 

(COX-2), the enzyme that produces prostaglandin E2. Both PGE2 and COX-2 are present at 

higher levels both in the endometriotic tissue and the PF of patients with endometriosis than in 

healthy women (Badawy, Marshall, & Cuenca, 1985; Cobellis et al., 2004; M. H. Wu, Lu, 

Chuang, & Tsai, 2010). These agents are the most commonly prescribed drugs to relieve 

endometriosis-associated dysmenorrhea and other pain symptoms (Nasir & Bope, 2004; 

"Practice bulletin no. 114: management of endometriosis," 2010).  However, new reports 

indicate that several of these pain symptoms may not be significantly reduced by these drugs 

(Barcena de Arellano & Mechsner, 2014; Practice Committee of the American Society for 

Reproductive, 2014) .  

Surgical Procedures 

Laparoscopic surgery is routinely performed as a diagnostic and a treatment option for 

endometriosis (Duffy et al., 2014; Practice Committee of the American Society for 

Reproductive, 2014; Vercellini et al., 2014). During the surgery, typically the peritoneal fluid is 

drained from the peritoneal cavity, as it is a dynamic milieu of inflammatory and nociceptive 

molecules that exacerbate the symptoms of endometriosis and pain (Koninckx, Kennedy, & 

Barlow, 1998; Morotti et al., 2014; Santanam, Murphy, & Parthasarathy, 2002). In the incidence 

that endometriotic lesions are identified within the peritoneal cavity, they are excised at the time 

of laparoscopy. While laparoscopy is shown to relieve endometriosis-associated pain, it is 

common for the pain to return within a few months or years after the procedure (Giudice, 2010). 

This recurrence of aggravating symptoms often leads to the removal of reproductive organs on 

which endometriotic lesions may develop and flourish. A hysterectomy entails removing the 
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uterus while total hysterectomy typically entails removal of the uterus, fallopian tubes, and 

ovaries ("Practice bulletin no. 114: management of endometriosis," 2010). While hysterectomy 

does not guarantee relief from all pain, it has proven to be very successful and is the ultimate 

treatment in 20 to 30% of endometriosis cases (Acien & Velasco, 2013; Shah & Adlakha, 2014).  

Other surgical procedures such as neurectomy and laparoscopic uterine nerve ablation have been 

developed to address the fact that pain is a neurological phenomenon. The readers are referred to 

the comprehensive review by Stratton and colleagues on how endometriosis affects the central 

nervous system and current methods (both surgical and pharmacological) for treating the 

resultant pain (Stratton & Berkley, 2011). 

Roadblocks to Treatment 

Though several investigators continue to search for better treatments for this enigmatic 

disease, there still remain roadblocks for success. Without intervention, endometriosis can last 

the lifetime of a woman, from her teenage years until her 70s. It affects both her health and 

quality of life. Effective treatment of endometriosis and its associated symptoms is therefore a 

key to improving her quality of life. Despite the several available treatment options, combating 

the pain associated with this condition and the disease itself remains unsuccessful. The 

recurrence of pelvic pain following the afore-mentioned treatments is the primary reason for 

continued investigations into identifying better therapeutic options for patients with 

endometriosis. Because many of the women suffering from this condition are young, 

hysterectomies are typically undesirable and treated as a last resort. There is now an urgent need 

to identify and define the underlying causes of endometriosis and its associated symptoms such 

as the debilitating pain associated with it. In 2009, the recommendations of an international 

consensus group on endometriosis research were published (Rogers et al., 2009). Amongst other 



www.manaraa.com

8 

 

goals, they stated that the “development of non-hormonal medical treatments to prevent or treat 

endometriosis and associated symptoms is a priority (Rogers et al., 2009).” In this review, we 

highlight some of new mechanisms that may be involved in pain associated with endometriosis.  

NOVEL MECHANISMS OF PAIN 

At this point, we know that at least five types of endometriosis-associated pain have been 

identified: (i) menstrual cycle pain, (ii) perimenstrual pain (dysmenorrhea), (iii) nerve 

entrapment, (iv) neuropathic pain, and (v) other pain due to hyperalgesia and allodynia (Fraser, 

2010). Our laboratory has been working to uncover some of the nociceptive mechanisms that 

cause hyperalgesia and allodynia. While the categories of pain associated with endometriosis are 

well-defined, the mechanics behind each is rather complex. The Practice Committee of the 

American Society for Reproductive Medicine (ASRM) recently reported that the three primary 

mechanisms of endometriosis-associated pain are: (i) the production of cytokines and growth 

factors from the cells of the implants (i.e. macrophages), (ii) the effects of active bleeding from 

these implants, and (iii) irritation of invasion of the pelvic floor nerves by the implants (Practice 

Committee of the American Society for Reproductive, 2014). Here we propose some additional 

mechanisms of pain as well as potential therapies for pain experienced by women with 

endometriosis. 

Oxidative Stress 

There is an abundance of evidence supporting the role of oxidative stress in the 

development and progression of endometriosis, including studies from our laboratory (Murphy, 

Santanam, & Parthasarathy, 1998; Santanam, Kavtaradze, Murphy, Dominguez, & 

Parthasarathy, 2013; Santanam, Murphy, et al., 2002). As in other painful disorders such as 

myofascial pain disorder (Koca et al., 2014) and fibromyalgia (Fatima, Das, & Mahdi, 2013), 
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endometriosis has been associated with an increase in reactive oxygen species (ROS) produced 

by macrophages (Lousse et al., 2012; Murphy, Santanam, & Parthasarathy, 1998; Santanam, 

Murphy, et al., 2002). There is an abundance of oxidation sensitive markers in the PF of women 

with endometriosis (Carvalho, Samadder, Agarwal, Fernandes, & Abrao, 2012; Santanam, 

Murphy, et al., 2002). We have shown that, in patients with endometriosis, there are higher 

levels of oxidized lipids such as lysophosphatidylcholine (Murphy, Santanam, & Parthasarathy, 

1998) and oxidized lipoproteins, especially oxidized low-density lipoprotein (ox-LDLs) 

(Murphy, Santanam, & Parthasarathy, 1998; Santanam, Murphy, et al., 2002). These oxidized 

lipoproteins increase the proliferation of endometrial cells and increase recruitment of 

macrophages in the peritoneal cavity (Murphy, Santanam, & Parthasarathy, 1998; Santanam, 

Murphy, et al., 2002). Components of oxidized low density lipoprotein such as hydroperoxy 

eicosatetraenoic acids (HPETES) or hydroperoxy octadecaenoic acids (HPODEs) express 

prostaglandin-like properties (Proudfoot, Beilin, & Croft, 1995) and hence have the ability to 

participate in nociceptive pathways (Patwardhan et al., 2010; Patwardhan, Scotland, Akopian, & 

Hargreaves, 2009). We recently demonstrated that components of oxidatively-modified LDLs 

were similar to the oxidized lipids (including prostaglandin products) present in the peritoneal 

fluid of women with endometriosis. These oxidized components of LDL were capable of causing 

hyperalgesia in rodent models (K. Ray et al., 2015).  

In addition to their direct nociceptive actions, increased ox-LDLs also induce pro-

inflammatory cytokines in the peritoneal fluid (PF). Cytokines such as tumor necrosis factor α 

(TNF-α), interleukin 6 (IL-6), and macrophage colony-stimulating factor (M-CSF) are present at 

increased concentrations in the PF of patients with endometriosis (Polak, Barczynski, et al., 

2013). Ox-LDL also increased monocyte chemotactic protein 1 (MCP-1) in endometrial cells 
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(Rong, Ramachandran, Santanam, Murphy, & Parthasarathy, 2002). The abundant presence of 

these molecules in the PF of women with endometriosis and their ability to (i) increase 

proliferation of endometrial cells (ii) participate in nociceptive pathways and (iii) increase 

macrophage mediated inflammation, makes them an ideal candidate for targeting in 

endometriosis associated pain. Many studies have brought oxidative stress to the forefront of 

endometriosis research and Table 1.1 summarizes their key findings. 

Inflammatory/Immune Response 

The afore-mentioned cytokines (TNF-α, IL-6, M-CSF) have also been linked to the 

tissues of endometriosis patients. It is well established that much of the inflammatory response 

seen in endometriosis is linked to the role of nuclear factor-kappa B (NF-κB), cyclooxygenase 2 

(COX-2), and aromatase within the eutopic endometrium (Brenner, Nayak, Slayden, Critchley, 

& Kelly, 2002; Maia et al., 2013; Ponce et al., 2009). The cytokines generated through the 

activation of these pathways participate in the nociceptive responses (Garmendia & De Sanctis, 

2012). However, these do not directly contribute to endometriosis-associated nociception. A 

recent animal study by Alvarez and Levine led to the implication of IL-6 and neural growth 

factor (NGF) in this pain, but not TNF-α. The authors of this study proposed that while IL-6 acts 

to sensitize nociceptors at their receptors, it is the NGF which is released from endometriotic 

lesions that contributes to mechanical hyperalgesia (Alvarez & Levine, 2014). 

Based on the definition of endometriosis, it is reasonable to think that endometriotic implants 

may be viewed by the immune system as a foreign entity. In fact, activated monocytes or 

macrophages are seen in higher numbers in the PF of women with endometriosis than in those 

without (Agic et al., 2006; Bedaiwy & Falcone, 2003; Santanam, Murphy, et al., 2002). 

Macrophages are also at least partially responsible for the development and growth of 
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endometriotic lesions (Capobianco & Rovere-Querini, 2013; Santanam, Murphy, et al., 2002). 

While our studies have shown that the scavenging function of these activated monocytes is 

thought to be compromised in an endometriotic environment (J. G. Kim, Keshava, Murphy, 

Pitas, & Parthasarathy, 1997; Santanam, Murphy, et al., 2002), these immune cells continue to 

secrete cytokines and growth factors which links these macrophages to neuropathic pain. This 

link is a major area of investigation in several clinical conditions including endometriosis 

(Baron, Binder, & Wasner, 2010). A combination of inflammatory and neuropathic processes is 

present in patients with endometriosis, creating what Barcena de Arellano and colleagues termed 

“a neurogenic inflammatory reaction.” As peritoneal endometriotic lesions release an array of 

pain mediators, macrophages and mast cells release a number of cytokines and chemokines and 

critical peripheral nerve fibers release pro-inflammatory neurotransmitters that potentiate pain 

(Barcena de Arellano & Mechsner, 2014; Kobayashi et al., 2014). 

Nociceptive Pain 

Nociceptive pain differs from neuropathic pain in that it results from neural activity that 

is secondary to the tissue damage itself. Typically pain generated in endometriosis is categorized 

as neuropathic or inflammatory; however, researchers often note a change in nociceptive pain 

when discussing the effects of a potential treatment. Simsek et al stated that atorvastatin lowers 

hypernociception in endometriosis animal models (Simsek et al., 2014). The nociceptive 

mechanisms in such cases have yet to be elucidated, but there are other molecules that have been 

shown to be involved in endometriosis. The role of fractalkine (CX3CL1) and its receptor 

(CX3CR1) in endometriosis has been the topic of multiple studies (Bellelis et al., 2013; Shimoya 

et al., 2005; Y. Wang et al., 2013; Y. Wang et al., 2014). While there seems to be conflicting 

reports of its role in the peritoneal fluid (Shimoya et al., 2005)Wang and colleagues have 



www.manaraa.com

12 

 

established the role of fractalkine in the cross-talk between endometrial stromal cells (ESCs) and 

macrophages in endometriosis patients (Y. Wang et al., 2014). Eutopic ESCs in these patients 

secrete higher levels of fractalkine that contribute to increased invasiveness of the cells. The 

inflammatory chemokine interleukin-22 (IL-22) of the IL-10 family, along with its receptors, is 

also overexpressed in eutopic endometrium and ectopic lesions of endometriosis patients 

compared to healthy patients (Y. Guo et al., 2013). The same study also concluded that IL-22 is 

responsible for promoting ESC proliferation (Y. Guo et al., 2013). These inflammatory 

chemokines and cytokines have a role in nociception and are now considered as potential targets 

for treating pain (Fedele & Berlanda, 2004; Kyama et al., 2009; Neziri et al., 2014; Schwager et 

al., 2011). Transient receptor potential vanilloid type 1, or TRPV1, also acts as a nociceptive 

mediator in endometriosis-associated pain (Greaves, Grieve, Horne, & Saunders, 2014; Rocha et 

al., 2011; Song, Leng, & Lang, 2012). Higher TRPV1 immunoreactivity was discovered in 

peritoneal endometriomas from patients with chronic pelvic pain compared to those without 

chronic pelvic pain (Rocha et al., 2011). Significantly higher TRPV1 expression has also been 

directly linked to increased pain scores in endometriosis patients (Song et al., 2012). Lastly, 

endogenous opioids have long been associated with nociceptive pain (Basbaum & Fields, 1984; 

Millan, 2002). Matsuzaki and colleagues found that the expression of the mu-opioid receptor 

(MOR) is higher in ectopic endometrium than the eutopic counterpart in both ovarian and deep 

infiltrating endometriosis (Matsuzaki et al., 2006). While the function of the MOR in the disease 

is unclear, it has been shown that GnRH agonists as well as progestin therapies lowered MOR 

expression in endometriosis (Matsuzaki et al., 2007). Agents targeting the afore-mentioned genes 

could potentially be considered as treatments for endometriosis; however, the potential for habit-

forming side effects for some of these agents may be a major downside to these options.  
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MicroRNAs and Other Epigenetic Mediators 

Epigenetics describes heritable genetic alterations that do not involve any changes to the 

DNA sequence (Holliday, 1994). This area of research is on the rise in many disorders, including 

endometriosis. At the forefront of epigenetic research is the role of microRNAs (miRNAs), short 

RNAs (about 23 nucleotides) which are capable of regulating gene expression at the 

transcriptional, post-transcriptional, and translational levels by binding to complementary 

sequences on target mRNA (Andersen, Duroux, & Gazerani, 2014; Bartel, 2009). More 

specifically, miRNA regulation occurs via degradation of the target mRNA in cases of perfect 

complementarity with the target mRNA sequence, or via impaired translation in cases of 

imperfect matching, leading to gene silencing (Deng, Calin, Croce, Coukos, & Zhang, 2008; 

Mari-Alexandre et al., 2016). MiRNAs are also capable of activating gene expressions via 

targeting the mRNA or by repressing nonsense-mediated RNA decay (Vasudevan, Tong, & 

Steitz, 2007).  MiRNAs are being studied by many as biomarkers in endometriosis (Braza-Boils 

et al., 2014; Ohlsson Teague et al., 2009; Teague, Print, & Hull, 2010), but they could also be 

key biomarkers in endometriosis-associated pain. The downregulation of miRNAs associated 

with inflammation could cause heightened expression of key inflammatory genes. Laudanski and 

colleagues found significant downregulation of miR-483-5p, which targets IGF2, and miR-629-

3p, which is linked to inflammation, in the eutopic endometrium of endo patients compared to 

control tissues (Laudanski et al., 2013; Mari-Alexandre et al., 2016). Further studies could 

determine whether these miRNAs could be the targets of therapies for chronic pelvic pain 

associated with endometriosis. Circulating miRNAs could also be targeted for therapeutic 

purposes. As in certain cancers, these miRNAs can bind toll-like receptors (TLRs) of immune 

cells. 
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Histone modifications and DNA methylation are other aspects of epigenetics and offer 

additional mechanisms by which pain may afflict endometriosis patients. Methylation of a gene’s 

promoter region is typically associated with repression of its expression. There is a possibility 

that proinflammatory cytokines trigger aberrations in the epigenetic and genetic profile of 

endometriosis patients. For example, TNFα is at least partially responsible for the 

hypermethylation of the progesterone receptor isoform B (PR-B) promoter (S. W. Guo, 2009; Y. 

Wu, Strawn, Basir, Halverson, & Guo, 2006). Limiting the number of progesterone receptors 

could further contribute to the progression of endometriosis and render some hormonal therapies 

useless.  

POTENTIAL NOVEL TREATMENTS 

Antioxidants 

Due to the implication of oxidative stress in several forms of chronic pain, numerous 

researchers have sought to treat painful disorders with antioxidants. Vitamins E and C 

supplementation for 4 to 8 weeks before laparoscopic surgery relieved dysmenorrhea and 

dyspareunia symptoms in women with endometriosis (Santanam et al., 2013). After as little as 

two months of Vitamin E and C administration also lowered inflammatory markers [regulated on 

activation, normal T cell expressed and secreted (RANTES), interleukin 6 (IL-6), monocyte 

chemotactic protein (MCP-1)] in the PF of patients with endometriosis (Santanam et al., 2013). 

In the rodent model of nociception, we observed that antioxidants (vitamin E or n-acetylcysteine) 

inhibited the oxidized-LDL mediated nociceptive responses (unpublished observations). 

Similarly, antioxidants such as melatonin or n-acetyl cysteine showed promises of reducing 

endometriosis-associated pain in human subjects (Porpora et al., 2013; Schwertner et al., 2013). 

At low doses antioxidants can serve as a safe, alternative medical treatment (Porpora et al., 2013; 
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Santanam et al., 2013; Schwertner et al., 2013). Recently, several of the Chinese herbs that have 

antioxidant properties are also being considered as adjunct treatment for endometriosis (Flower, 

Lewith, & Little, 2011; Jiang, Shen, & Wang, 2010). These studies suggest a likelihood of using 

antioxidant treatments as a stand-alone or adjuvant therapy to the currently available treatments 

for endometriosis. 

Alternate Anti-inflammatory Agents 

Currently non-steroidal anti-inflammatory drugs (NSAIDs) are the most common anti-

inflammatory treatment for endometriosis (Nasir & Bope, 2004; "Practice bulletin no. 114: 

management of endometriosis," 2010). However, as mentioned earlier, confidence in the 

effectiveness of these drugs to treat endometriosis-associated dysmenorrhea is waning (Allen, 

Hopewell, Prentice, & Gregory, 2009; Brown & Farquhar, 2014; Practice Committee of the 

American Society for Reproductive, 2014). Other new agents have been identified which have 

the potential for more effectively alleviating these symptoms. One such agent is Parthenolide, the 

bioactive component of feverfew, which has been shown to suppress the progression of 

endometriosis by targeting the NF-κB inflammatory pathway. Takai et al. found that this 

compound diminished TNF-α-induced IL-8 gene and protein expression, while also down-

regulating COX-2 gene expression and PGE2 synthesis in human ESCs (Takai et al., 2013). At 

this point, this feverfew derived compound is not associated with any severe side effects. A 

phase I trial is currently underway. Another natural anti-inflammatory agent, derived from the 

bark of the French maritime pine, blocks the activity of both COX-1 and COX-2 to produce anti-

inflammatory and anti-thrombotic effects (Kohama, Herai, & Inoue, 2007; Maia et al., 2013). 

This compound, eventually dubbed Pycnogenol®, also down-regulates NF-κB gene expression. 

These properties prompted Kohama and colleagues to investigate the compound’s effectiveness 
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as a treatment for menstrual pain (Kohama, Suzuki, Ohno, & Inoue, 2004). After unveiling its 

potential as an analgesic, a clinical trial was conducted to test the efficacy of Pycnogenol® as a 

treatment for endometriosis. When compared to a GnRH agonist, Pycnogenol® was as effective 

in improving symptom scores (Kohama et al., 2007). These studies indicate that this compound 

could serve as an alternative therapy in the near future. Resveratrol, a compound found in red 

grapes, also possesses anti-inflammatory properties that have proven promising in alleviating 

endometriosis-related pain when used in conjunction with OCs (Maia, Haddad, Pinheiro, & 

Casoy, 2012). Lastly, there is evidence that histone deacetylase inhibitors (HDAC inhibitors), 

such as trichostatin A (TSA), suppress proinflammatory cytokines such as IL-1β and TNFα 

(Denk & McMahon, 2012). As mentioned earlier, these play an important role in the 

inflammatory profile of endometriotic lesions and PF. A study of TSA in a mouse model of 

endometriosis found that the therapy reduced lesion size and improved response to a painful 

stimulus (Lu, Nie, Liu, Zheng, & Guo, 2010). 

Anti-nociceptive Treatments 

Sodium channel blockers are typically prescribed for the treatment of cardiac arrhythmia 

but have more recently been studied as neuropathic pain blockers as well (Kalso, 2005). Few 

studies have reported the impact of traditional sodium channel blockers on endometriosis-

associated pain, but Wickström and colleagues noted an improvement in the quality of life of 

patients with endometriosis given lidocaine (Wickstrom, Bruse, Sjosten, Spira, & Edelstam, 

2013). Most tri-cyclic antidepressants (TCAs) are also potent sodium channel blockers and, thus, 

are prescribed for neuropathic pain. The doses at which these drugs can effectively block pain 

are typically lower than those at which they serve as antidepressants (Hearn, Derry, Phillips, 

Moore, & Wiffen, 2014), hence the potential for side effects such as drowsiness, constipation, 
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and blurred vision is lowered. While studies testing the effectiveness of TCAs in treating chronic 

pelvic pain are scarce, there is a potential to treat the physical symptoms of endometriosis while 

also improving coping mechanisms.  

CONCLUSIONS 

 There is no shortage of treatments for the various forms of pain associated with 

endometriosis. While a few options remain first line treatments, it is imperative that we continue 

to uncover the nociceptive mechanisms behind this condition to help achieve appropriate 

treatments. In many instances, we can begin working from broader mechanisms such as 

oxidative stress and inflammation and then narrow it into novel directions. This review provides 

support for treatments such as antioxidants, medicinal herbs, and antidepressants by addressing 

novel mechanisms of pain. Figure 1.1 details the mechanisms and non-surgical treatment 

options, both current and novel, available for endometriosis-associated pain. Table 1.2 

summarizes the work that has been completed using these options. The objective of the research 

detailed in this thesis was to further delve into the afore-mentioned mechanisms of pain. Of 

particular interest was the role of oxidized stress in endometriosis. Despite the work that has 

been completed in this area (Table 1.1), a mechanism by which oxidized lipoproteins induce 

inflammation and nociception has not been elucidated. We hypothesized that these molecules act 

in a manner similar to prostaglandins and trigger such responses via regulation of epigenetic 

mechanisms such as microRNAs. Various pathways were investigated using patient tissues as 

well as animal and cell models of endometriosis.  
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Figure 1.1. New and tested therapeutic targets of endometriosis-associated pain 
A general overview of pain mechanisms involved in endometriosis, along with current and 
potential therapies. COX-2 = cyclooxygenase 2; LDLs = low-density lipoproteins; NF-κB = 
nuclear factor κB; NSAIDs = nonsteroidal anti-inflammatory drugs; OCs = oral contraceptives; 
PUFA = polyunsaturated fatty acid (linoleic acid [LA], arachidonic acid [AA]); TNF-α = tumor 
necrosis factor alpha.
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Table 1.1. Key investigations into the role of oxidative stress on endometriosis-associated 
pain 
ROS: reactive oxidative species; MCP-1: monocyte chemotactic protein 1; ox-LDL: oxidized 
low-density lipoprotein; 8-OH-dG: 8-hydroxy-2'-deoxyguanosine; 8-iso-PGF2α: 8-isoprostane-
prostaglandin2α 
(Ngo et al., 2009; Zeller, Henig, Radwanska, & Dmowski, 1987)(Polak, Barczynski, et al., 2013)(Polak, Barczynski, et al., 2013)(Rong et al., 2002)(Giudice & Kao, 
2004)(Seeber et al., 2010; Sharma, Dhaliwal, Saha, Sangwan, & Dhawan, 2010)(Polak, Barczynski, et al., 2013)(Turgut et al., 2013) 
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Table 1.2. Novel and proposed therapies for endometriosis-associated pain. RCT: 
randomized controlled trial; NFκB: nuclear factor κB; COX: cyclooxygenase; TCAs: tricyclic 
antidepressants; HDAC: histone deacetylase; TSA: trichostatin A 
(Y. L. Chung, Lee, Wang, & Yao, 2003; Glauben et al., 2006; Leoni et al., 2005)
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CHAPTER 2 

OXIDATION SENSITIVE NOCICEPTION INVOLVED IN ENDOMETRIOSIS 

ASSOCIATED PAIN 
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ABSTRACT 

Endometriosis is a disease characterized by the growth of endometrial tissue outside the 

uterus and is associated with chronic pelvic pain. Peritoneal fluid (PF) of women with 

endometriosis is a dynamic milieu, rich in inflammatory markers and pain-inducing 

prostaglandins PGE2/PGF2α and lipid peroxides, and the endometriotic tissue is innervated with 

nociceptors. Our clinical study showed the abundance of oxidatively-modified lipoproteins in the 

PF of women with endometriosis and the ability of antioxidant supplementation to alleviate 

endometriosis-associated pain. We hypothesized that oxidatively-modified lipoproteins present 

in the PF are the major source of nociceptive molecules that play a key role in endometriosis-

associated pain. In this study, PF obtained from women with endometriosis or control women 

were used for (i) the detection of lipoprotein derived oxidation-sensitive pain molecules, (ii) the 
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ability of such molecules to induce nociception, and (iii) the ability of antioxidants to suppress 

this nociception. LC-MS/MS showed the generation of eicosanoids by oxidized-lipoproteins 

similar to that seen in the PF. The oxidatively-modified lipoproteins induced hypothermia (intra-

cerebroventricular) in CD-1 mice and nociception in the Hargreaves paw-withdrawal latency 

assay in Sprague-Dawley rats. Antioxidants, vitamin-E and N-acetylcysteine and the NSAID, 

indomethacin suppressed the pain inducing ability of oxidatively-modified lipoproteins. 

Treatment of human endometrial cells with oxidatively-modified lipoproteins or PF from women 

with endometriosis showed up-regulation of similar genes belonging to the opioid and 

inflammatory pathways. Our finding that oxidatively-modified lipoproteins can induce 

nociception has a broader impact not only in the treatment of endometriosis-associated pain but 

also in other diseases associated with chronic pain.  

INTRODUCTION 

Endometriosis is a highly debilitating inflammatory disease (Lousse et al., 2012) that 

afflicts 10-15% of women of child-bearing age (Augoulea, Alexandrou, Creatsa, Vrachnis, & 

Lambrinoudaki, 2012; Burney & Giudice, 2012). It is characterized by the presence of 

endometrial cells outside the uterus and often presents with pain and/or infertility. Endometriosis 

is most commonly associated with dysmenorrhea, dyspareunia, non-cyclic pain and abdominal 

pain (Stratton & Berkley, 2011; Taylor, Hummelshoj, Stratton, & Vercellini, 2012). 

Laparoscopic surgery to remove the endometriotic tissue is a major treatment option to relieve 

pain, but often results in recurrence of the disease (Deguara, Pepas, & Davis, 2012; Koga, 

Osuga, Takemura, Takamura, & Taketani, 2013). The relationship between the severity of the 

disease and the presence of pain symptoms is not well defined (Milingos et al., 2006). It has been 

hypothesized that the ectopic lesion releases chemotactic molecules that attract immune cells into 
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the peritoneal cavity, accumulating in the peritoneal fluid (PF) (Bedaiwy & Falcone, 2003; 

Kyama et al., 2009). This triggers the secretion of more cytokines and growth factors, thus 

sustaining the growth of the lesion (Barcz, Kaminski, & Marianowski, 2000).  

The cyclooxygenases (COX-1 and COX-2) and 12, 15, or 5-lipoxygenase derived lipid-

mediators from arachidonic acid (AA), such as prostaglandin E2 (PGE2) and prostaglandin F2α 

(Petho & Reeh, 2012) and 12- and 15-(S)-hydroperoxyeicosatetraenoic acids (HPETE), 5- and 

15-(S)-hydroxyeicosatetroenoic acids (HETE), and leukotriene B4 are potent activators of 

nociceptors (Durand et al., 2009; Smith, 2006) and participate in nociception, or the ability to 

feel pain (Zeilhofer, 2007). Endometriotic tissue expresses COX-2 (Buchweitz et al., 2006; 

Lousse, Defrere, Colette, Van Langendonckt, & Donnez, 2010) and PF of patients with 

endometriosis contain varying amounts of PGE2 and PGF2α (Sacco, Portelli, Pollacco, Schembri-

Wismayer, & Calleja-Agius, 2012; M. H. Wu et al., 2010).  Chronic pain is often attributed to 

tissue inflammation and injury resulting from oxidative stress  and oxidants such as superoxide 

and nitric oxide (NO) play a role in nociception (Aley, McCarter, & Levine, 1998; Z. Q. Wang et 

al., 2004). 

Non-steroidal anti-inflammatory drugs (NSAIDs) which inhibit COX enzymes and 

prevent the enzymatic oxidation of AA to generate prostanoids are the most commonly 

prescribed agents to alleviate pain in endometriosis (Allen et al., 2009; Streuli et al., 2013).  

Interestingly, AA can undergo non-enzymatic (free-radical mediated) oxidation to generate 

prostaglandin-like products that may not be inactivated by NSAIDs (Durand et al., 2009). The 

source or nature of these prostaglandin-like products, the likelihood of these molecules to play a 

role in nociception and agents that inhibit their production is not currently known. This discovery 

will be highly beneficial in the treatment of chronic pain.  
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Studies from our laboratory have shown the importance of oxidative stress in the etiology 

of endometriosis (Murphy, Santanam, Morales, & Parthasarathy, 1998; Murphy, Santanam, & 

Parthasarathy, 1998; Santanam, Murphy, et al., 2002) and showed increased presence of 

oxidative and inflammatory stress markers in the PF of women with endometriosis (Santanam, 

Murphy, et al., 2002). Many of these oxidant-sensitive markers increase inflammatory response 

and endometriotic lesion growth in animal models of endometriosis (Carvalho et al., 2012; 

Murphy, Santanam, & Parthasarathy, 1998), which can be prevented by antioxidant (N-

acetylcysteine or vitamin E) supplementation (Pittaluga et al., 2010; Porpora et al., 2013; 

Santanam et al., 2013). Interestingly, our clinical trial showed that antioxidant (vitamin E and C) 

supplementation also lowered pain responses in women with endometriosis (Santanam et al., 

2013) thus suggesting that the nociceptive molecules are oxidation-sensitive. We have shown 

that women with endometriosis have high levels of lipoproteins (abundant in AA), in their PF 

(Murphy, Santanam, Morales, et al., 1998; Murphy, Santanam, & Parthasarathy, 1998; 

Santanam, Murphy, et al., 2002). In the present study, we provide evidence that these 

lipoproteins undergo non-enzymatic oxidation and generate prostaglandin-like molecules that 

modulate nociception in animal models of pain. Antioxidants can suppress the generation of 

these nociceptive molecules. 

MATERIALS AND METHODS 

Human Subject Participants 

Approximately, 50 women/group, ages 18-60 years undergoing tubal ligation (control 

women, without endometriosis) or undergoing laparoscopy for endometriosis were recruited 

from the Department of Obstetrics and Gynecology, Cabell Huntington Hospital, Marshall 

University School of Medicine, Huntington, WV and Emory University School of Medicine, 
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Atlanta, GA. This HIPAA compliant study was approved by the Institutional Review Board of 

the Marshall University School of Medicine and Emory University School of Medicine and was 

carried out according to the principles of the Declaration of Helsinki. All patients were consented 

prior to the study. All women completed a validated patient history form and an assessment form 

of pain using a visual analogue scale for assessment of endometriosis associated pain 

(dysmenorrhea, non-menstrual pelvic pain, dyspareunia, and dyschesia) (adapted from the 

validated International Pelvic Pain Society’s Pelvic Assessment Form). Peritoneal fluid (devoid 

of blood contamination) was collected on ice during surgery, then immediately transferred to the 

research facility and centrifuged at 2000xg to remove any cellular debris. The supernatant was 

used immediately for studies or stored at -800C freezer for future use. The inclusion criteria for 

the study included adult non-smoking women, age 18-60 years, with normal menstrual cycles 

and otherwise in normal health (except for pain and endometriosis) who had not been on any 

hormonal medication for at least 1 month before sample collection.  Exclusion criteria included 

subjects with current medical illnesses such as diabetes, cardiovascular disease, hyperlipidemia, 

hypertension, systemic lupus erythematosis or rheumatologic disease, positive HIV/AIDS, active 

infection, current medications such as hormonal/anti-hormonal medications, anti-inflammatory 

medications including corticosteroids. Subjects were asked to stop multivitamins that contain 

high levels of antioxidants at least one week prior to the surgery. The menstrual phase was 

calculated from the last menstrual period data obtained from the patient history forms.  

Low Density Lipoprotein (LDL) Isolation.  

LDL was isolated from heparinized blood obtained from normal human volunteers by the 

single-spin ultracentrifugation technique using a Beckman Table Top TL100 ultracentrifuge (B. 

H. Chung, Wilkinson, Geer, & Segrest, 1980). Since lipo-polysaccharide (LPS) contaminations 
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can induce inflammatory responses, careful precautions were used to avoid any auto-oxidation or 

LPS contamination. LPS free water and buffers were used for all isolation procedures and the 

LPS levels were determined using the LAL assay (Limulus Amoebocyte Lysate assay, CapeCod 

Inc, Falmouth, MA). The protein concentration of the isolated LDL was measured using Lowry’s 

method (Lowry, Rosebrough, Farr, & Randall, 1951). 

Oxidation of LDL in the Presence or Absence of Antioxidants or NSAIDs 

Briefly, 100µg/mL of LDL was incubated with 5µM of copper sulfate (an oxidant) in 

1mL of 1X phosphate buffered saline (PBS, pH 7.4). Lipid peroxidation was initiated by the 

reaction between copper and polyunsaturated lipids present in the lipoproteins. The oxidation 

was measured in a Shimadzu UV-VIS spectrophotometer by following the generation of 

conjugated-diene products (lipid peroxidation marker) which has a unique absorption at OD 

234nm (Supplementary Figure 2.1A). The oxidation process was terminated at specific time 

points to generate various forms of oxidatively-modified LDL preparations, by the addition of 

50µM of 1mM EDTA (a copper chelator). The LDL preparations included: (a) native LDL (L0), 

(b) minimally-modified LDL-L1 (usually terminated at the end of the lag time), (c) oxidized 

LDL-L2 (after the oxidation has reached its plateau) and (d) completely or fully oxidized LDL-

L3 (after 24 hours of oxidation) (Parthasarathy, Auge, & Santanam, 1998; Parthasarathy, 

Raghavamenon, Garelnabi, & Santanam, 2010; Parthasarathy, Santanam, & Auge, 1998). 

Control LDL preparations were incubated without copper and stopped at various time points 

similar to the one that goes through oxidation (in the presence of copper) to serve as respective 

non-oxidized LDL controls. These various forms of LDL preparations represent LDL that has 

undergone oxidation at various levels and thus has undergone changes in both chemical and 

biochemical properties (Parthasarathy, Auge, et al., 1998; Parthasarathy et al., 2010; 
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Parthasarathy, Santanam, et al., 1998; Parthasarathy, Santanam, Ramachandran, & Meilhac, 

2000). Oxidative modification of LDL increases its negative charge which is reflected by its 

increased electrophoretic mobility as shown in Supplementary Figure 2.1B (Arrio, Bonnefont-

Rousselot, Catudioc, & Packer, 1993). These represent heterogeneous LDL molecules that are 

theoretically possible to be physiologically present (Parthasarathy et al., 2000). The various LDL 

preparations were prepared fresh for use in nociception and all other studies.  

 For antioxidant studies, the above LDL preparations were generated in the presence of 

antioxidants, N-acetylcysteine (1mM) or vitamin E (50µM) or the COX inhibitor indomethacin 

(1µg) (NSAID).  Briefly, 100µg/mL of LDL was incubated with 5µM of copper sulfate in the 

presence of these agents and the oxidation was followed at OD 234 nm in a UV-VIS 

spectrophotometer. These preparations were used in the cell culture experiments and in 

Hargreaves nociception assay.  

Thiobarbituric Acid Related Substances (TBARS) 

TBARS are a measure of the extent of oxidation when lipids undergo peroxidation. 

TBARS were measured in all the LDL preparations at the end of oxidation, as an increase in 

optical density 540nm using a standardized protocol (Yagi, 1998). The amounts of TBARS were 

quantitated using commercially available malondialdehyde (Sigma-Aldrich, St. Louis, MO) as 

standard and expressed as nmoles/mg protein. Typically, TBARS levels of the various 

preparations range as follows: L0<5 nmoles; L1=15-20 nmoles; L2=35-40 nmoles; L3>35 

nmoles.  

Agarose and Native Gel Electrophoresis for Lipoproteins 

Agarose gel electrophoresis (Beckman Coulter Inc., Brea, CA) was used to separate 

lipoproteins in the PF and plasma and the various oxidatively modified LDL preparations (L0, 
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L1, L2 and L3) using manufacturer’s instructions. The lipoproteins were identified using Fat red 

O staining. Commercially available LDL and HDL samples were used as standards. 10% native 

polyacrylamide gel electrophoresis was used to detect the presence of apolipoprotein B (Mol 

weight >200 kd) in the PF samples.  Proteins were detected using Coomassie brilliant blue after 

separation of the samples on a native PAGE.   

Prostaglandin E2 (PGE2) and 8-Isoprostane (8-Iso) Detection Using EIA Kits 

In order to assess if the non-enzymatic oxidation of lipoproteins can generate PGE2-like 

molecules, PGE2 and 8-isoprostane levels were detected in both the PF and oxidatively modified 

LDL preparations using commercially available Enzyme Immunoassay (EIA) kits from Cayman 

Chemicals (Ann Arbor, MI). 100µl of the LDL preparations were either directly (no dilution) or 

after dilutions (10-1000 fold dilution in 1xPBS) and 50 µL of PF were used in the EIA assays. 

Manufacturer’s instructions were followed for both the measurements and post-analysis of PGE2 

and 8-isoprostanes and expressed as pg/ml. T-test was used to compare the levels of PGE2 in the 

control PF to the levels in endometriotic PF. In addition, one-way ANOVA followed by 

Dunnett’s multiple comparison test was used to compare the levels of PGE2-like molecules 

generated in all the oxidatively modified LDL preparations (L1, L2, L3) to the levels generated 

in the native LDL (unoxidized LDL-L0) control preparation. 

LC-MS/MS Detection  

Eicosanoids and 20:4n6 lipids were extracted from PF and LDL preparations using an 

acetone liquid/liquid extraction (Brose & Golovko, 2013; Brose, Thuen, & Golovko, 2011; 

Golovko & Murphy, 2008) with slight modifications.  PF or LDL preparations (500µl) was 

extracted with 500µl saline (0.9% NaCl) and 2mL acetone with deuterium labelled internal 

standards (100pg PGE2-d9; 500pg PGF2α-d4, LTB4-d4, TxB2-d4, 5S-HETE-d8, 12S-HETE-d8; 
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10ng 20:4n6-d8) (Cayman Chemicals) at pH 3.0 followed with 2 mL of chloroform with 0.005% 

BHT.  The extract was dried under nitrogen and re-dissolved in 12µl of acetonitrile:water 

(40:60).  The LC-MS/MS system consisted of an ACUITY UPLC pump (Waters; Milford, MA), 

and a XEVO TQ-S triple quadruple mass spectrometer (Waters) with electrospray ion source.  

The autosampler temperature was 8°C.  Ten µL of sample was injected onto an ACUITY UPLC 

HSS T3 column (1.8µM, 100Å pore diameter, 2.1×150 mm, Waters) with an ACUITY UPLC 

HSS T3 precolumn (1.8µM, 100Å pore diameter, 2.1×5 mm, Waters).  The separation was 

performed as previously described (Brose, Baker, & Golovko, 2013; Brose & Golovko, 2013). 

The flow rate was 0.45mL/min and the initial conditions were 39%B (0.1% formic acid in 

acetonitrile) and 61%A (0.1% formic acid in water).  At 0.5min solvent B was increased to 

40.5% over 6.88min, then increased to 70% over 1.62min, then increased to 75% over 3min, 

further increased to 98% over 1.5min and held for 5.3min.  The solvents were then returned to 

initial conditions over 0.2min and held for 2min to re-equilibrate the column.  The mass 

spectrometer was operated in negative ion mode.  The capillary and cone voltage were 2.3kV 

and 30V, respectively.  The desolvation and source temperature were 550C and 150C, 

respectively.  The nebulizer gas was 7.0 bar and the desolvation and cone gas flows were 

1000L/h and 150L/h, respectively.  MassLynx V4.1 (Waters) was used for instrument control, 

data acquisition and sample analysis.   

 PGF2α, TxB2, 20:4n6, LTB4, and 5-HETE were quantified using PGF2α-d4, TxB2-d4, 

20:4n6-d8, LTB4-d4, and 5S-HETE-d8 as an internal standard, respectively, 12-HETE and 15-

HETE using 12S-HETE-d8, and all other PG were quantified using PGE2-d9 as previously 

validated (Golovko & Murphy, 2008).  Analytes were monitored in MRM mode as previously 

described (Brose & Golovko, 2012, 2013; Brose et al., 2011; Golovko & Murphy, 2008) using 



www.manaraa.com

30 
 

the following mass transitions: PGE2-351.18/271.13; 11β-PGE2-351.18/271.13, 8-isoPGE2-

351.18/271.13, PGD2-351.06/271.14; 6-ketoPGF1α-369.26/163.07; PGF2α-353.07/193.04; TXB2-

369.20/169.00; 20:4n6-303.07/259.21; LTB4-335.07/194.99; 5-HETE-319.20/115.20; 12-HETE-

319.10/267.21; 15-HETE - 319.12/219.09; PGE2-d9-360.2042/280.17; PGF2α-d4-357.16-197.01; 

TXB2-d4-373.22-173.03; 20:4n6–d8-310.93/267.21; LTB4-d4-339.26/197.06; 5S-HETE-d8-

326.86/116.03; 12S-and-HETE-d8-327.12/184.04. The collision energies used were (eV): PGE2-

16; PGD2-16; 11β-PGE2-16, 8-isoPGE2-16,6-ketoPGF1α - 24; PGF2α-20; PGF2α-d4-22; TXB2-12; 

PGE2-d9-14; TXB2-d4-12; 20:4n6-12; LTB4-14; 20:4n6-d8-12; LTB4-d4-14; 5-HETE-10; 12-

HETE-12; 15-HETE-10; 5S-HETE-d8-14; 12S-HETE-d8-12.   

Human Pain: Neuropathic and Inflammatory RT2 PCR Array 

Ishikawa cells (Sigma, St. Louis, MO), a human (39 year old female) established 

endometrial cell-line, was cultured in T75 flasks in complete media (DMEM/F12, Pen/Strep, 

FBS, glutamine). These cells were used since they express similar characteristics of mature 

endometrial epithelial cells (Castelbaum et al., 1997; Lessey et al., 1996; Sugihara et al., 2014). 

About 80% confluent cells were treated with either PGE2 (50ng/ml), 25µg of various LDL 

preparations, or 100µl of PF from patients with and without endometriosis for 48 hours. The 

concentrations chosen were selected from preliminary unpublished studies. At the end of 48 

hours, cells were collected using Qiazol reagent (Qiagen, Gaithersburg, MD) and RNA was 

isolated using Qiagen RNeasy Mini Kit. cDNA synthesis from 1µg of each sample was achieved 

using Qiagen RT2 First Strand Kit. Nociceptive and inflammatory pathway genes were analyzed 

in the cDNA samples using the commercial Human Pain: Neuropathic and Inflammatory RT2 

PCR Array (PAHS-162ZA, Qiagen, Valencia, CA) on the Biorad MyiQ system. Ishikawa cells 

treated with 1% charcoal-stripped serum containing media alone (DMEM/F12, Pen/Strep, 



www.manaraa.com

31 
 

charcoal-stripped FBS, glutamine) were used as the control group. Fold change was determined 

using Pfaffl equation [2^-(ddct)] for all groups compared to media control using the manufacturers 

(Qiagen) algorithm which uses T-test as the default statistics to compare differences between 

control and treated groups. A stringent 4-fold cutoff was used to identify differentially expressed 

genes in Ishikawa cells treated by various groups compared to the charcoal-stripped media 

treated cells (control group).  

Body Temperature Assay (Intracerebroventricular Injections-Hypothermia/Hyperthermia) 

Intracerebroventricular (i.c.v.) injection of PGE2 produces fever (hyperthermia) through 

an agonist action at the four subtypes of EP receptors (notably EP3 and EP1).  Prostaglandins 

interact with these receptors to modulate body temperature (hypothermic or hyperthermic 

response) (Furuya et al., 2003; Oka, 2004). To assess whether the oxidized LDL preparations 

function similarly, we assessed the effect of these lipids on body temperature in mouse models.  

An IACUC approval from Louisiana Health Sciences Center Institutional Review committee was 

obtained for this study. All investigators were certified to perform animal studies.  Groups of 

male CD-1 mice (n =8; Charles River, Boston, MA) weighing 34-40g were acclimated to the 

testing room for 3 hrs.  Baseline body temperatures were taken rectally three times separated by 

at least 10 min using a thermistor telethermometer (Cole-Parmer).  Only the last determination 

was used for statistical comparison.  After baseline testing, 5 µl of saline (control), 1ng/ml PGE2, 

LDL-L0 (100 µg/ml), or one of the oxidized LDL preparations (L1, L2, L3) was injected i.c.v. 

using a 30 gauge needle attached to a Hamilton microsyringe with PE10 tubing (Haley & 

McCormick, 1957).  After injection, body temperature was assessed every 10 min for 1 hr. After 

the first hour, temperatures were assessed at 120 min, 160 min and 24 hours after initial 

injection.  Baseline temperatures were subtracted from post-injection temperatures, and reported 
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as mean change in body temperature. The mice were euthanized at the end of the study using 

IACUC approved procedures. Two-way ANOVA (repeated measures) followed by Bonferroni’s 

post-hoc test was used to assess the difference in body temperature between saline injection and 

the other treatments over time.  

Hargreaves Paw Withdrawal Pain Assay 

To assess whether the non-enzymatically oxidized lipoproteins are a potential source of 

pain inducing molecules, we performed a Hargreaves assay of paw withdrawal latency as a 

measure of in vivo pain response using known pain inducers (carrageenan and PGE2), and 

compared it to native LDL (L0) and its oxidized forms (L1 and L2). The Hargreaves Method 

(Hargreaves, Dubner, Brown, Flores, & Joris, 1988) was performed to measure nociception 

(pain) in rodent models using the IITC Model 390 Plantar Test Analgesia Meter (Woodland 

Hills, CA). An IACUC approval from Marshall University Institutional Review committee was 

obtained for this study. All investigators were certified to perform animal studies.  Male 

Sprague-Dawley rats (Hill-top Lab animals, Scottdale, PA), 7-8 weeks of age, were used for this 

study. Briefly, a beam of light was directed onto the midplantar (dorsal surface) region of the 

hindpaws. The operator turned off the light and recorded the time of withdrawal of the hindpaw 

from the surface. The active intensity was set at 25% and the cutoff time as 20 secs. Treatments 

were performed through a randomized blinded study. Each treatment sample (100µL) was 

injected into the dorsal surface of the hindpaw of the rats and readings (paw withdrawal time) 

were measured every 30 minutes for the first hour and subsequently every hour for a total of 8 

hours. An additional measurement was performed after 24 hours, post-injection. Saline injected 

on the left paw was used as an internal control to account for volume and pain related behavior 

associated with injection. Treatments included 3% carrageenan (an irritant that produces pain), 
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50ng/mL PGE2, 100µl of different oxidatively modified forms of LDL protein (100µg/mL), PF 

from women with and without endometriosis (100µL). Carrageenan served as a positive control 

to validate the use of the Hargreaves paw withdrawal pain assay. In order to investigate if 

antioxidants would mitigate the nociceptive response mediated by oxidatively-modified 

lipoproteins, LDLs prepared in the presence of antioxidants 1mM N-acetylcysteine, and 50µM 

vitamin E or the COX inhibitor 1µg indomethacin were also tested for nociception. The paw-

withdrawal time was recorded in triplicates for each treatment per time point per rat. The number 

of rats used for each experiment varied according to the treatment and were kept at least n>6 for 

all treatments. The rats were euthanized at the end of the pain assessment using IACUC 

approved procedures. The data were averaged for each time point and % withdrawal latency was 

determined by comparing the treatment response time versus saline response time (Equation 1). 

Thus, % withdrawal latency <100 is indicative of increased pain related behavior associated with 

the stated treatment, whereas a % withdrawal latency >100 is indicative of a decrease in pain 

related behavior with the stated treatment.  

Equation 1. % Withdrawal Latency = [average time response to paw withdrawal of 

treatment]/[average time response to paw withdrawal of saline] 

Statistical Analysis 

Prism© software (Graphpad, Inc., La Jolla, CA) was used for statistical analysis of human 

and cell culture studies. T-test was used for detecting differences in eicosanoids (LC-MS), 

prostaglandins, 8-isoprostanes (EIA) and electrophoretic mobilities of isolated lipoproteins 

between control and endometriotic PF. One-way ANOVA followed by Dunnett’s multiple 

comparison test was used to find differences in PGE2 levels between unoxidized LDL (L0) and 

the oxidized preparations (L1-L3). Two way ANOVA followed by Bonferroni’s post hoc test 
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was used to detect differences in body temperature (icv) between treatments and saline (control) 

over time.  

Statistical analysis on results generated by the Hargreaves pain assay was implemented in 

R (v 3.0.2) (www.r-project.org). Significance was defined at p-values < 0.05 (two-sided). Linear 

mixed effects (LME) models on log10 transformed data were used to identify significant 

differences in pain induction between the treatment groups of interest and the internal control 

(saline) through time. All models originally contained an interaction term with the time. Paired t-

tests were used to compare differences between treatment and saline at each time as a follow-up 

exploratory analysis following LME; however, it should be stated that the use of the paired t-test 

may increase probability of type 1 error.  

Prism© software (Graphpad, Inc., La Jolla, CA) was used for preparation of graphs.  

RESULTS 

Human Studies 

Presence of Cyclooxygenase and Lipoxygenase Generated Eicosanoids in PF of 

Women with Endometriosis 

EIA analysis was done on the PF samples from endometriosis and control subjects. There 

was an increased presence of enzymatically derived PGE2 (p=0.07) (Figure 2.1A) and free-

radical or non-enzymatically derived 8-isoprostanes (p=0.005, T-test) (Figure 2.1B) in the PF of 

women with endometriosis (n=43) compared to control (n=36) subjects. LC-MS/MS separation 

of the PF from a representative number of patients (n=6/group) was done to confirm the presence 

of eicosanoids (both enzymatic and non-enzymatically generated). Figure 2.1C showed higher 

levels of 12, 15 or 5-lipoxygenase derived eicosanoids such as 12, 15-HETEs (p<0.05, T-test) or 
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5-HETEs, and though not significant, cyclooxygenase derived eicosanoids such as PGE2 and 

PGD2 in endometriosis patients compared to control subjects.   

 

Figure 2.1. Presence of eicosanoids in peritoneal fluid. (A, B) Enzyme Immunoassay-EIA 
showed the presence of COX generated PGE2 and free-radical generated 8-isoprostanes in the 
PF. The levels of PGE2 (p<0.07) and 8-isoprostanes (p<0.005) were higher in the PF from 
endometriosis patients (n=43) compared to control women (n=36). Results are expressed as 
pg/ml ± SEM. (C) LC-MS/MS separation of PF lipids showed the presence of higher levels of 
both COX generated prostanoids (PGE2, PGD2) as well as 12, 15, 5-LOX generated 12, 15, 5-
HETEs in the PF from endometriosis (n=6) patients compared to control women (n=6). T-test 
was used for statistical analysis. P<0.05 was considered significant.  
 

Evidence for Presence of Modified Lipoproteins in the PF of Women with 

Endometriosis.  

Supplementary Figure 2.2A shows a typical agarose gel separation of lipoproteins (LDL, 

VLDL and HDL) present in plasma (PL), LDL isolated from the plasma (Pl-LDL), peritoneal 

fluid (PF) and LDL isolated from peritoneal fluid (PF-LDL). As shown earlier, oxidative 

modification of LDL increases its negative charge which is reflected by its increased 
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electrophoretic mobility (Supplementary Figure 2.1B) (Arrio et al., 1993). We have earlier 

shown that while 90% of the PF samples from subjects with endometriosis were positive for the 

presence of lipoproteins (LDL and HDL), only 45% from normal subjects were positive for 

lipoproteins (Murphy, Santanam, Morales, et al., 1998; Murphy, Santanam, & Parthasarathy, 

1998). We had also previously shown that plasma LDL and PF-LDL of subjects with 

endometriosis had significantly greater electrophoretic mobilities of 0.87±0.08 and 1.37±0.15cm, 

respectively (p<0.005, T-test) compared to 0.6±0.02 and 0.8±0.06cm in control subjects, 

respectively (Murphy, Santanam, Morales, et al., 1998; Murphy, Santanam, & Parthasarathy, 

1998). The presence of lipoproteins in the PF of subjects with endometriosis did not appear to be 

due to contamination by blood. Supplementary Figure 2.2B showed an intact apolipoprotein B 

(apoB) in the LDL isolated from the PF. 

Non-enzymatic Oxidation of LDL Generates Prostaglandin-like Molecules 

Figure 2.2A shows that the non-enzymatically modified LDL preparations generated 

PGE2-like molecules measurable using PGE2 Enzyme Immunoassay (EIA) kits (Cayman 

chemicals, Ann Arbor, MI). Compared to native LDL (L0), the levels of PGE2-like molecules 

increased with the extent of LDL oxidation, (2-3 fold=L1, 5-6 fold=L2 and 10-12 fold=L3) 

(p<0.0001, one-way ANOVA, Dunnett’s multiple comparison test), i.e. the more the length of 

oxidation time, the more formation of PGE2-like molecules were observed. LC-MS/MS studies 

confirmed the generation of prostanoids PGE2, PGD2 and 11β-PGE2 and lipoxygenase products 

12, 15 and 5-HETEs in the non-enzymatically modified LDLs (Figure 2.2B). The prostanoid 

levels increased whereas LOX products decreased with increase in extent of LDL oxidation 

(Figure 2.2C).   
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Figure 2.2. Detection of prostaglandin-like molecules by LC-MS/MS.  (A) Oxidatively-
modified LDL preparations were used to detect the presence of prostaglandin-like molecules 
using PGE2 EIA kit. The levels of prostaglandin-like molecules as measured by EIA increased 
as the level of oxidation of LDL increased, with L0 (control group) having the least level 
compared to L3 (n=10-12). (B and C) LC-MS/MS was used to detect eicosanoids generated by 
non-enzymatic oxidation of LDLs. Both enzymatic (PGE2, PGD2), and non-enzymatically 
generated oxidation products were generated during the oxidation of lipoproteins. One-way 
ANOVA followed by Dunnetts’ multiple comparison test was used for statistical analysis. 
P<0.05 was considered significant. 
 
Studies in Rodent Model 

ICV Injections of LDL in Mouse Model Induce Thermal Response 

Intracerebroventricular (i.c.v.) injection of PGE2 (Figure 2.3), produced a significant 

(Two way ANOVA, Bonferroni posttest) increase in body temperature (380 to 400) within 30 

minutes (p<0.001) of injection compared to saline injection. This response lasted until 60-90 

minutes (p<0.01 at 90 min).  In contrast, L0 (native LDL) and its three oxidatively modified 

LDLs (L1-L3) all produced an initial drop (hypothermia) in body temperature (-2 to -4 degree 



www.manaraa.com

38 
 

Celsius, 380 to 350) around 30-40 minutes. L0 and L3 injected mice returned to baseline 

temperatures (380C) within 90 minutes; however, the L1 and L2 injected mice maintained higher 

temperature for more than 100-120 minutes (p<0.05 for L1 and p<0.01 for L2 at 120 min and 

p<0.01 for L2 at 160 min). These results are indicative of these lipids functioning similar to 

prostanoids (PGE2) in modulating body temperature either through EP receptors or others such 

as opioid receptors (Furuya et al., 2003).   

 

Figure 2.3. Oxidatively-modified LDLs and body temperature. Baseline rectal temperatures 
were assessed in five groups of CD-1 mice (n=10).  Mice were then injected i.c.v. with native 
LDL (L0), minimally modified LDL (L1), oxidized LDL (L2), fully oxidized LDL (L3), or PGE2 
and temperature assessed every ten min for sixty min and recorded as a difference from baseline 
(0 = 38.4ºC, SEM = 0.2).  PGE2 produced a significant increase in body temperature (380 to 
420C) from 20 min to 50 min after injection, whereas native LDL (L0) and its oxidized 
preparations (L1, L2, L3) produced a decrease in body temperature (380 to 350) from 10 min 
through 60 min. Two-way ANOVA followed by Bonferroni posttest was used to assess 
differences in body temperature between saline injection and other treatments over time.  

 

Oxidatively-modified Lipoproteins Induce Pain Related Behavior 

In the Hargreaves paw withdrawal assay, all treatments (carrageenan, PGE2, LDL 

preparations) injected on the dorsal surface of the right paw of SD rats were compared against 

the respective internal saline control (injected on the dorsal surface of the left paw). A paw 

withdrawal latency <100% indicates an increase in pain related behavior induced by the stated 

treatment. Figure 2.4A illustrates a typical % withdrawal latency ± SEM (as compared to saline) 
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curve following injection with known pain inducers, carrageenan or PGE2. Carrageenan, an 

irritant (n=5) served as a positive control to validate the use of the Hargreaves pain assay. 

Compared to saline, significant reductions in withdrawal latencies (indicative of increased pain 

sensitivity) were observed at 60min, 180min and 240min post-injection with carrageenan (p: 

0.013, 0.043 and 0.002, respectively). Compared to saline, treatment with 50ng/mL PGE2 (n=22) 

induced significant reductions in withdrawal latency at 30min, 60min, 120min, and 180min post-

injection (p: 0.0002, 0.011, 0.025, and 0.0008 respectively); however, no differences in 

withdrawal latency were observed beyond 180min. Figure 2.4B illustrates the % withdrawal 

latency ± SEM (as compared to saline) following injection with native-LDL (L0; n=29), 

minimally modified-LDL (L1; n=44) or oxidized-LDL (L2; n=37). Compared to saline, 

treatment with L1 induced significant reductions in withdrawal latency at 240min (p: 0.0008) 

and L2 at 60min, 240min, 300min and 360min post-injection (p: 0.005, 0.045, 0.014, and 0.0472, 

respectively).  L0 indicated a reduction in withdrawal latency at 120min compared to saline. 

 Raw paw withdrawal response times (seconds) for each treatment group and the 

respective saline control over the course of 8 hours is provided in Supplementary Figure 2.3. 

Statistical analysis using LME models comparing treatments to saline (internal control) and with 

“time” as the interaction term, showed no significant interaction for saline versus treatment and 

time for Carrageenan, L0 and L2. However, comparing PGE2 to saline showed a significant 

interaction (p: 0.0002) between time and treatment versus saline indicating a different time 

course of pain related behavior for PGE2 versus saline. Similarly, comparing L1 to saline, 

showed a significant interaction (p: 0.0039) indicative of a different time course of pain related 

behavior for L1 versus saline.  
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Peritoneal Fluid from Women with Endometriosis Induces Pain Related Behavior 

Figure 2.4C illustrates the % withdrawal latency ± SEM (as compared to saline) 

following injection with PF from women with endometriosis (+Endo; n=8 subjects, in 

quadruplicates) or women without endometriosis (-Endo; n=8, in triplicates). Compared to 

saline, treatment with PF from women with endometriosis (+Endo) indicated significant 

reductions in withdrawal latency (i.e. increased pain related behavior) at 30min (p: 0.011) (time 

at which PGE2 induces pain related behavior, indicated by an arrow in the figure), as well as at 

240min and 300min post-injection (p: 0.003 and 0.005, respectively) (times at which L1 and L2 

induce pain related behavior, indicated with arrows in the figure, respectively). No such 

reduction in paw withdrawal latency was observed for PF (-Endo) except at 240 min. 

  Raw paw withdrawal response times (seconds) following injection with PF from women 

with or without endometriosis and the respective saline control over the course of 8 hours are 

provided in Supplementary Figure 2.3. Statistical analysis using LME models comparing 

treatments to saline (internal control) and with “time” as the interaction term, showed no 

interaction between time and treatment when comparing PF from women without endometriosis 

(-Endo) and saline, but a significant interaction (p: 0.0027) between time and PF (+) Endo versus 

saline was observed. 
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Figure 2.4. Oxidatively-modified LDLs induce nociception in Hargreaves assay.  
Paw withdrawal latency <100 in the Hargreaves assay indicates increased pain induced by the 
respective treatment. (A) Illustrates the % withdrawal latencies ± SEM (as compared to saline) 
following injection with known pain inducer carrageenan (3%) or PGE2 (50ng/mL). Significant 
reductions in withdrawal latency were observed at 60, 180 and 240 minutes (min) post-
carrageenan injection. Significant reductions in withdrawal latency were observed post-PGE2 
treatment at 30, 60, 120, and 180 minutes. (B)  Illustrates the % withdrawal latencies ± SEM (as 
compared to saline) following injection with 100µg/ml L0, L1 or L2. Compared to saline, 
significant decreases in withdrawal latency were observed at 120min and 240min for L0 and L1 
respectively and at 60, 240, 300 and 360min for L2. (C) Illustrates the % withdrawal latencies ± 
SEM (as compared to saline) following injection with 100µl PF (+) Endo or PF (-) Endo. 
Relative to saline, significant reductions in withdrawal latency were observed at 30, 240 min and 
300 min following treatment with PF (+) Endo and at 240min following treatment with PF (-) 
Endo. Abbrev: PGE2: Prostaglandin E2; L0: Native LDL; L1: Minimally modified LDL; L2: 
oxidized LDL. PF (+) Endo:  Peritoneal fluid from women with endometriosis; PF (-) Endo: 
Peritoneal fluid from control subjects; *: <0.05; **: <0.01; ***: <0.005. Arrows and labelled 
treatments above the arrow represent points of significant induction of pain related behavior by 
the stated treatment at the respective time points. The line presented at 100% indicates no change 
in response between treatment and saline. Statistical significance was determined using linear 
mixed effects models (LME) as described in the methods section. 
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Effect of Antioxidants (N-acetylcysteine or Vitamin E) and the NSAID 

Indomethacin on Induction of Pain Related Behavior by Oxidatively-modified LDL 

We hypothesized that if non-enzymatic oxidation of LDL generated oxidation-sensitive 

factors of nociception, then oxidation of LDLs in the presence of N-acetylcysteine (1mM), 

vitamin E (50µM) or indomethacin (1µg) should decrease the generation of these nociceptive 

factors. LDLs oxidized in the presence of these agents were tested for their nociceptive ability 

using the Hargreaves assay. Figure 2.5A illustrates the % withdrawal latency ± SEM (as 

compared to saline) following injection with minimally-modified-LDL-L1 prepared in the 

presence of antioxidants or NSAID, i.e. L1+1mM N-acetylcysteine (n=23), L1+50µM vitamin E 

(n=34), and L1+1µg indomethacin (n=14). Compared to saline, treatment with L1+1mM N-

acetylcysteine indicated a significant reduction in withdrawal latency at 60min and 360min post-

injection (p: 0.005 and 0.045, respectively); however, no pain related behavior was observed at 

240min post injection (the point in time where L1 alone induced a significant reduction in 

withdrawal latency (represented by arrow in the figure). Relative to saline, L1+50µM vitamin E 

indicated significant reductions in withdrawal latency at 120min, 180min and 240min post 

injection. There were no significant differences in withdrawal latency between L1 + 1µg 

indomethacin and saline. Figure 2.5B illustrates the % withdrawal latency ± SEM (as compared 

to saline) following injection with oxidized-LDL-L2 prepared in the presence of antioxidant or 

NSAID, i.e. L2+1mM N-acetylcysteine (n=18), L2+50µM vitamin E (n=19), and L2+1µg 

indomethacin (n=10). Compared to saline, L2+1mM N-acetylcysteine indicated significant 

reductions in withdrawal latency at 30min, 180min and 240min post injection (p: 0.040, 0.042 

and 0.017, respectively). Compared to saline, treatment with either L2+50µM vitamin E or 
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L2+1µg indomethacin did not indicate any significant reductions in withdrawal latency, 

suggesting no pain related behavior response.   

 Raw paw withdrawal response times (seconds) for each treatment group and the 

respective saline controls over the course of 8 hours are provided in Supplementary Figure 2.4. 

Statistical analysis using LME models comparing treatments to saline (internal control) and with 

“time” as the interaction term, showed significant interaction (p: 0.037) between L1+1mM N-

acetylcysteine and time versus saline but no such interactions with either L1+50µM vitamin E or 

L1+1µg indomethacin to saline.  

 

Figure 2.5. Withdrawal latencies of oxidatively-modified LDLs generated in the presence of 
N-acetylcysteine, Vitamin E or Indomethacin. (A) Illustrates the % withdrawal latencies ± 
SEM (as compared to saline) following injection with 100µg/mL L1 + 1mM NAc, L1 + 50µM 
Vit. E or L1 + 1µg indomethacin. Compared to saline, significant reductions in withdrawal 
latency were observed at 30 and 360min following treatment with L1 + 1mM NAc and 120, 180 
and 240min following treatment with L1 + 50µM Vit. E. The reductions were lower compared to 
L1 alone (the time at which L1 alone induced pain related behavior-indicated as an arrow in the 
figure). No differences in withdrawal latency were observed between saline treatment and L1 + 
1µg indomethacin. (B) illustrates the % withdrawal latencies ± SEM (as compared to saline) 
following injection with 100µg/mL L2 + 1mM NAc, L2 + 50µM Vit. E or L2 + 1µg 
indomethacin. Compared to saline, L2 + 1mM NAc indicated significant reductions in 
withdrawal latency at 30, 180 and 240 min post injection (arrows represent points of significant 
induction of pain related behavior by L2 alone). No differences in withdrawal latency was 
observed between saline and L2 + 50µM Vit E or L2 + 1µg indomethacin.  *: <0.05; **:< 0.01; 
***<0.005. The line presented at 100% indicates no change in response between treatment and 
saline. Statistical significance was determined using linear mixed effects models (LME) as 
described in the methods section. 
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Human Cell Culture Studies 

Oxidatively-modified LDLs Similar to PGE2 Modulate Genes Involved in 

Nociception 

A PCR array for neuropathic and inflammatory genes (Qiagen, Valencia, CA) was used 

to assess the similarities in regulation of genes involved in nociception by the oxidatively-

modified lipoprotein preparations (L0-L3) and PGE2. Ishikawa endometrial cells were either 

treated with LDL preparations or PGE2. A list of differentially expressed genes obtained from 

the Human Pain: Neuropathic and Inflammatory Array is provided in the Supplemental Section 

(Supplementary Table 2.1). The clustergram in Figure 2.6A shows the relative expression of the 

84 genes in the treatment groups compared to the Control group (cells treated with 1% charcoal-

stripped media alone). Figure 2.6B shows a breakdown of the up- and down-regulation of genes 

within each treated group based on the fold change. Stringent cut-offs of 4-fold changes 

compared to the control group were used. In most cases, the expression of these genes increased 

with the increasing level of LDL oxidation (L3>L0), supporting the concept of increased 

nociception or inflammation with increasing non-enzymatic oxidation of LDLs. A table of 

notable genes altered due to various treatments is given in Figure 2.6C. Blue indicates a value 

that is < a 4-fold decreased expression compared to the control, while red values indicate a ≥4-

fold increased expression from the control. Amongst the genes responsible for pain conduction, 

there was a distinct up-regulation in voltage-gated sodium channel (SCN10A, 11A, 3A and 9A) 

and opioid receptor (OPRD1 and M1) genes. About half of the genes associated with synaptic 

transmission (serotonin-HTR2A and glutamate receptors-GRIN2B and GRM5, calcium 

channels-CACNA1B) experienced similar up-regulation as a function of LDL oxidation level. 

The expression of key inflammatory genes such as interleukins-IL-2, IL-6, and fractalkine 
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receptor-1-CX3CR1, also increased in cells treated with increasing oxidation of LDL. PGE2 

treated cells compared to other treatments had a higher expression of PGE receptor 3 (PTGER3), 

the major receptors involved in PGE2 mediated pain and fever.  

The array was also used to study the changes in pain and inflammatory related genes in 

Ishikawa cells treated with PF obtained from women with (+Endo) and without (-Endo) 

endometriosis. Many genes that were differentially expressed by oxidatively-modified LDL 

treatments were similarly modulated in cells treated with PF from patients with endometriosis 

(Figure 2.6C) compared to control subjects. 
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Figure 2.6. Human Pain-Nociceptive and inflammatory PCR array. Human Pain-
Nociceptive and Inflammatory PCR array on Ishikawa endometrial cell lines that were treated 
with either PGE2 (50ng/ml) or the different forms of oxidatively modified LDLs (25µg/ml), or 
PF (100µl) from patients with endometriosis (+ Endo) or control women (-Endo) for 48 hours. 
(A) Clustergram of gene expression in cells treated with PGE2, oxidatively modified LDLs and 
peritoneal fluid. The array includes 84 inflammatory and nociceptive genes as well as 
housekeeping genes and quality control standards. (B) Represents the percent of genes that were 
classified as up-regulated, down-regulated, or no change compared to the control treatment based 
on a 4-fold cutoff of the fold change. (C) Represents notable genes based on fold change. 
Potential genes involved in the oxidatively-modified LDL mediated nociceptive pathway are 
highlighted with an arrow. While PGE2 and PF from women without endometriosis (-Endo) had 
very little change in gene expression, oxidatively-modified LDLs and endometriotic fluid from 
patients with endometriosis (+Endo) showed similar trends in induction of several nociceptive 
and inflammatory genes. [The supplementary Table 2.1 lists all the genes measured in the pain 
array]. Statistical analysis (T-test) was performed using the algorithm provided by the 
manufacturer (Qiagen). 
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DISCUSSION 

The relationship between endometriosis and existence of pelvic pain symptoms is still not 

well understood. Hence, treatment still remains a major challenge. Prostaglandins synthesized by 

COX-1 and COX-2 are key mediators of pain and nociception, which are induced by cytokines 

and oxidative stress (Augoulea et al., 2012; Lousse et al., 2012). Lowering COX-2 levels is 

correlated to decreased endometriotic lesion size and number of implants (Komiyama, Aoki, 

Katsuki, & Nozawa, 2006; Machado et al., 2010). Peripheral inflammation increases pain 

sensitivity and COX-2 expression in the periphery and the central nervous system (Vardeh et al., 

2009). Though NSAIDs are anti-inflammatory and anti-angiogenic in patients with 

endometriosis and animal models of endometriosis (Allen et al., 2009; Efstathiou et al., 2005) 

and used as the first line of treatment for pain, there is still no evidence that these agents are 

completely effective in relieving pain associated with endometriosis.  

 Oxidative stress, which is implicated in the etiology of several types of pain including 

chronic pelvic pain (Shahed & Shoskes, 2000), abdominal pain (Chi, Shiesh, & Lin, 2002) and 

fibromyalgia (Ozgocmen, Ozyurt, Sogut, & Akyol, 2006), induces NFkB and COX-2 and 

generates pro-inflammatory cytokines, TNF, IL-1β, NGF, nitric oxide (NO) and prostanoids. 

Oxidants such as superoxide (Z. Q. Wang et al., 2004) and NO donors (glyceryl trinitrite, sodium 

nitroprusside, SIN-1) can induce pain in humans (Aley et al., 1998; Petho & Reeh, 2012) and 

NOS inhibitors (NG-methyl-L-arginine) can reduce inflammatory hyperalgesia in a PGE2-

dependent manner (Aley et al., 1998). 8-Isoprostanes are elevated in the prostatic fluid of 

patients with chronic pelvic pain and in the serum and plasma of patients with muscle injury 

(Shahed & Shoskes, 2000; Sinzinger, Lupattelli, Chehne, Oguogho, & Furberg, 2001). We and 

others have demonstrated the potential for an important role for oxidative stress (lipid peroxides) 
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in the etiology of endometriosis (Augoulea et al., 2012; Carvalho et al., 2012; Santanam, Song, 

Rong, Murphy, & Parthasarathy, 2002). In addition to cytokines, chemokines, and growth 

factors, there is an abundance of oxidative stress markers in the PF of women with endometriosis 

(Carvalho et al., 2012; Polak, Wertel, et al., 2013; Santanam, Murphy, et al., 2002). We and 

others have shown the presence of lipoproteins, especially LDL in the PF of women with 

endometriosis (Murphy, Santanam, Morales, et al., 1998; Murphy, Santanam, & Parthasarathy, 

1998; Polak, Barczynski, et al., 2013; Turgut et al., 2013). Isolated LDL from the PF of women 

with endometriosis exhibited a higher electrophoretic mobility (oxidation increases the negative 

charge on the protein), lower levels of associated lipid antioxidants such as vitamin E and an 

increased ex-vivo oxidizability, thus suggesting that these lipoproteins are already in a slightly 

oxidized form (similar to the L1=minimally-modified LDL) (Murphy, Santanam, Morales, et al., 

1998; Murphy, Santanam, & Parthasarathy, 1998). There is an abundance of transition metals 

such as copper and iron present in the PF of women with endometriosis that may contribute to 

the oxidation process (Defrere et al., 2011; Turgut et al., 2013). Our clinical study demonstrated 

that vitamin E supplementation not only reduced inflammatory and oxidative stress markers in 

the women with endometriosis, but also reduced their pain symptoms (Santanam et al., 2013), 

suggesting the possible role for oxidation sensitive nociception in these women. 

 Oxidatively-modified lipoproteins can cross-react with antibodies generated against 

prostaglandins, PGE2 and PGF2 (Proudfoot et al., 1995). This finding adds to the speculation that 

oxidatively-modified lipoproteins can mimic prostaglandin effects. This study demonstrated that 

non-enzymatic oxidatively modified lipoproteins (shown to be present in the PF of women of 

endometriosis) are similar to prostaglandins in their ability to modulate body temperature, induce 

nociception and alter the expression of inflammatory and nociceptive genes.  LC-MS/MS studies 
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revealed that even non-enzymatic oxidation of LDLs generated both COX and LOX derived 

oxidation products of polyunsaturated lipids (PGE2, PGD2 and 11β-PGE2 and 12, 15 and 5-

HETEs). Hence, suppressing the generation of these molecules will probably necessitate the use 

of an antioxidant with or without conjunction with a COX inhibitor (NSAIDs).  

 It is known that the systemic inflammatory response to PGE2 depends on its dose as well 

as its distribution. Centrally, as well as at low doses, PGE2 causes fever, whereas peripherally 

and at higher doses, it elicits a hypothermic response (Morimoto, Long, Nakamori, & Murakami, 

1991; Romanovsky, Simons, Szekely, & Kulchitsky, 1997). Non-prostaglandin eicosanoids such 

as seen in the oxidized LDL preparations can also play a role in thermoregulation (Kozak & 

Fraifeld, 2004). In our study, at the doses tested, i.c.v injection of LDL preparations resulted in 

hypothermia in contrast to the PGE2 mediated hyperthermic reaction (body temperature). It has 

been shown that LPS as well as oxidants such as NO can cause hypothermia (Goteri et al., 2005; 

Koga et al., 2000; Monroy, Kuluz, He, Dietrich, & Schleien, 2001). In Hargreaves assay of 

nociception, we observed a time-sensitive pain related behavior by PGE2 which peaked around 

30 min and had no pain related behavior beyond 180min. Oxidized LDL preparations had 

varying pain related behavior responses which correlated with the extent of oxidation 

(L2>L1>L0). Interestingly, the oxidized LDL preparations had a dual pain related behavior 

response, with an initial early response (around 30-60 min), possibly due to the presence of PGE2 

followed by a later response (around 240-300 min) possibly due to the presence of other oxidized 

products.  This dual response was similar to the pain related behavior response seen in the 

presence of PF from women with endometriosis (+Endo). These studies suggested both central 

and peripheral effects of oxidized LDL metabolites. 
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 Antioxidants when given alone or in combination with analgesics lowered oxidative 

stress mediated pain (Cameron, Jack, & Cotter, 2001; Rokyta et al., 2003). Oxidized lipoproteins 

(L1-L2) generated in the presence of antioxidants N-acetylcysteine (aqueous antioxidant) and 

Vitamin E (lipid-soluble antioxidant) or the COX inhibitor (NSAID) indomethacin had no major 

effect on the initial pain related behavior responses (i.e. PGE2 mediated) but had a reduced 

capacity to induce pain related behavior at later time points (i.e. oxidized lipids mediated). The 

discrepancy in overall responses can be attributed to the dose of the agents tested as well as the 

extent to which these agents were able to inhibit the oxidation of LDL.  Overall, our results 

support the notion that the use of antioxidants along with NSAIDs or other analgesics can reduce 

pain related behavior induced by oxidatively-modified LDL and may serve as potential 

therapeutic options for endometriosis-associated pain or other pain conditions. Though there 

were few instances where a null response or negative effect of dietary antioxidants (Kashanian, 

Lakeh, Ghasemi, & Noori, 2013; Trabert, Peters, De Roos, Scholes, & Holt, 2011) (Parazzini, 

Vigano, Candiani, & Fedele, 2013) or other agents such as raloxifene actually increasing chronic 

pelvic pain (Stratton et al., 2008) was observed, the majority of the studies with antioxidants had 

positive effects in ameliorating pelvic pain in endometriosis (Practice Committee of the 

American Society for Reproductive, 2014).  

 The Nociceptive and Inflammatory Pathway Gene Array revealed potential candidate 

genes that might be involved in nociception due to oxidatively-modified lipoproteins. We found 

that these lipoproteins do interact with similar receptors as PGE2, but perhaps to a different 

extent. For example, there was very little change seen in the expression of PGE2 receptors (e.g. 

PTGE3) when cells were treated with oxidatively-modified lipoproteins compared to PGE2 but 

had higher induction of the opioid receptors, OPRD1 and OPRM1. DNA microarray analysis of 
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tissues obtained from patients with deep-endometriosis identified OPRM1 as one of the top three 

potential candidate genes involved in pain pathways (Matsuzaki, 2011; Matsuzaki et al., 2005; 

K. L. Ray, Mitchell, & Santanam, 2014) and both GnRH agonists and continuous oral progestin 

treatments reduced the expression of OPRM1 in these patients (Matsuzaki et al., 2007).  Other 

genes that were differentially expressed in oxidized lipoprotein treated cells included voltage-

gated sodium channels (SCN10A, 3A and 9A) (Dib-Hajj, Cummins, Black, & Waxman, 2010), 

which are known to be upregulated by COX derived prostanoids after inflammation (Gould et 

al., 2004), and the TRP family of ligand-gated ion channels (TRPV1 and TRPA1) (Patwardhan 

et al., 2010). Inflammatory genes (IL-6, IL-2, CX3CR1) were also activated, suggesting a role 

for these pathways in nociception. Interestingly, most of the genes that were modulated by 

oxidatively-modified lipoproteins were similar to those induced by cells treated with PF from 

women with endometriosis treated cells. The major limitations of our study include the use of 

non-endometriosis animal model to test pain responses, use of single doses of the tested agents 

and the use of a single nociceptive assay (Hargreaves). However, our findings are significant 

enough to support the presence of the oxidized lipid molecules in the PF of women with 

endometriosis and their potential role in endometriosis associated pain. The observation that 

oxidatively-modified lipoproteins are able to induce pain receptors and have the ability to 

modulate nociception makes them ideal candidates as therapeutic targets for pain in conditions 

such as the endometriosis-associated pain. Future studies using other animal models and in 

humans should explore the therapeutic use of targeting these agents in nociception.  
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Supplementary Figure 2.1. Preparation of oxidatively modified LDL. (A) Lipoproteins 
undergo oxidation at different levels (Parthasarathy, Santanam, et al., 1998). The figure is a 
graphical representative of LDL that has undergone copper-mediated non-enzymatic oxidation. 
LDL preparations were collected at different time points during oxidation to represent, L0: native 
LDL at zero time, L1: minimally oxidized LDL, collected at the end of the lag-time, when the 
LDL begins to undergo oxidation, L2: oxidized LDL, collected at the end of LDL oxidation and 
L3: fully oxidized LDL, collected at the end of 24 hours of oxidation. (B) Representative figure 
of agarose gel electrophoresis showing increase in negative charge with increasing oxidation of 
LDL (L3>L2>L1>L0).  
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Supplementary Figure 2.2. Presence of lipoproteins in peritoneal fluid. (A) A representative 
figure of the agarose gel electrophoresis showing the presence of LDL, VLDL and HDL in the 
plasma, and the presence of LDL and HDL in peritoneal fluid. We have earlier published that 
while 90% of the PF samples from subjects with endometriosis were positive for the presence of 
lipoproteins, only 45% from normal subjects were positive for lipoproteins. We have shown 
earlier that the LDL isolated from PF was slightly more oxidized (increased negative charge) 
compared to plasma isolated LDL (Murphy, Santanam, Morales, et al., 1998; Murphy, 
Santanam, & Parthasarathy, 1998). (B) The image on the right is a representative native gel 
electrophoresis followed by Coomassie blue staining of lipoproteins. It shows the presence of 
intact apoB in the isolated LDL from PF.  
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Supplementary Figure 2.3. Raw paw withdrawal times (seconds). Paw withdrawal latencies 
(seconds) ± SEM across time (0-8hours) are shown. (A) Paw withdrawal latencies (seconds) ± 
SEM following injection of 3% carrageenan (right paw) and saline (left paw). Relative to saline, 
significant reductions in paw withdrawal latencies were observed at 60min, 180min and 240 min 
post carrageenan injection. (B)  Paw withdrawal latencies (seconds) ± SEM following injection 
of 50ng/mL PGE2 (right paw) and saline (left paw). Compared to saline, significant decreases in 
paw withdrawal latencies were observed at 30min, 60min, 120min and 180 min post PGE2 
injection. (C-E) Paw withdrawal latencies (seconds) ± SEM following injection of 100µL L0, L1 
or L2 respectively (right paw) and saline (left paw). Compared to saline, a significant reduction 
in paw withdrawal latency was observed at 120min post L0 injection, at 240min post L1 
injection and at 60min, 240min, 300min and 360min post L2 injection. (F-G) Paw withdrawal 
latencies (seconds) ± SEM following injection of 100µL PF from subjects with (+Endo) or 
without (-Endo) endometriosis (right paw) and saline (left paw). Compared to saline, significant 
decreases in paw withdrawal latencies were observed at 30min, 240min and 300min post PF 
(+Endo) injection and only around 240min post PF (-Endo) injection. Statistical significance was 
determined using linear mixed effects models (LME) as described in the method section. * p-
value< 0.05; ** p-value< 0.01; *** p-value<0.005. 
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Supplementary Figure 2.4. Raw paw withdrawal times (seconds).  Paw withdrawal latencies 
(seconds) ± SEM across time (0-8hours) are shown. (A-C) Paw withdrawal latencies (seconds) ± 
SEM following injection of 100µL L1 + 1mM NAc or 50µM Vit.E or 1µg Indomethacin (right 
paw) and saline (left paw). Compared to saline, L1 + 1mM NAc indicated significant reductions 
in paw withdrawal latencies at observed at 60min and 360min post injection and at 120 min, 180 
min and 240min for 50µM Vit E post injection. No significant differences in withdrawal 
latencies were observed for L2 + 1µg Indomethacin post injection. (D-F) Paw withdrawal 
latencies (seconds) ± SEM following injection of 100µL L2 + 1mM NAc or 50µM Vit.E or 1µg 
Indomethacin (right paw) and saline (left paw). Compared to saline, L2 + 1mM NAc indicated 
significant reductions in withdrawal latency at 30 min, 180 min and 240 min post injection. No 
significant differences in withdrawal latencies were observed with either L2 +50µM Vit.E or L2 
+1µg Indomethacin compared to saline. Statistical significance was determined using linear 
mixed effects models (LME) as described in the method section. * p-value< 0.05; *** p-
value<0.005. 
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  Ishikawa cells treatment 

Gene ID Description PGE2 L0 L1 L2 L3 -ENDO +ENDO 

ACE Angiotensin I converting enzyme (peptidyl-dipeptidase A) 1 0.91 3.38 3.53 4.14 7.43 0.37 2.34 

ADORA1 Adenosine A1 receptor 0.47 2.59 2.08 1.65 2.45 0.96 1.25 

ADRB2 Adrenergic, beta-2-, receptor, surface 1.06 2.88 3.71 4.78 13.88 0.45 1.18 

ALOX5 Arachidonate 5-lipoxygenase 2.21 2.49 1.77 3.03 4.06 0.80 1.35 

BDKRB1 Bradykinin receptor B1 0.25 2.70 4.10 2.10 7.60 0.47 2.77 

BDNF Brain-derived neurotrophic factor 1.87 1.11 1.55 2.18 3.11 0.42 0.65 

CACNA1B Calcium channel, voltage-dependent, N type, alpha 1B subunit 0.25 3.41 8.59 2.19 10.49 0.81 3.48 

CALCA Calcitonin-related polypeptide alpha 0.26 3.30 9.09 3.29 11.18 0.90 2.95 

CCK Cholecystokinin 1.02 6.20 12.62 8.90 12.85 0.20 0.70 

CCKBR Cholecystokinin B receptor 0.98 2.65 2.02 1.88 2.57 0.38 1.28 

CCL2 Chemokine (C-C motif) ligand 2 0.63 9.77 22.65 3.81 16.30 1.33 6.06 

CCR2 Chemokine (C-C motif) receptor 2 0.18 1.95 7.75 3.06 13.95 0.68 4.87 

CD200 CD200 molecule 0.47 3.34 3.68 3.15 12.24 0.96 6.31 

CD4 CD4 molecule 0.15 2.98 1.93 1.86 1.25 0.84 2.51 

CHRNA4 Cholinergic receptor, nicotinic, alpha 4 0.08 3.28 4.28 2.76 19.80 0.32 1.19 

CNR1 Cannabinoid receptor 1 (brain) 0.28 6.38 12.72 5.96 18.33 0.84 3.80 

CNR2 Cannabinoid receptor 2 (macrophage) 0.31 1.25 1.80 1.96 1.42 0.61 0.86 

COMT Catechol-O-methyltransferase 0.98 1.64 1.53 1.43 2.60 1.37 1.32 

CSF1 Colony stimulating factor 1 (macrophage) 1.35 2.72 1.76 2.80 3.43 0.75 1.47 

CX3CR1 Chemokine (C-X3-C motif) receptor 1 0.18 3.19 8.12 3.00 8.35 0.77 4.19 

DBH Dopamine beta-hydroxylase (dopamine beta-monooxygenase) 0.83 1.98 5.22 3.26 7.78 0.51 1.51 

EDN1 Endothelin 1 0.45 1.34 2.24 2.51 2.85 1.09 1.60 

EDNRA Endothelin receptor type A 1.21 1.55 1.14 1.78 2.43 0.59 1.24 

FAAH Fatty acid amide hydrolase 0.82 1.45 1.73 1.39 1.66 0.79 1.32 

GCH1 GTP cyclohydrolase 1 0.82 1.15 1.95 2.58 1.81 0.95 0.92 

GDNF Glial cell derived neurotrophic factor 0.97 1.94 2.06 4.06 6.16 0.66 2.81 

GRIN1 Glutamate receptor, ionotropic, N-methyl D-aspartate 1 2.15 1.43 1.65 0.71 1.53 0.42 1.69 

GRIN2B Glutamate receptor, ionotropic, N-methyl D-aspartate 2B 0.92 3.36 2.55 4.92 7.55 1.42 1.34 

GRM1 Glutamate receptor, metabotropic 1 1.25 3.05 1.42 3.23 3.26 0.51 1.37 

GRM5 Glutamate receptor, metabotropic 5 0.12 2.86 8.20 2.25 13.44 0.36 2.27 

HTR1A 5-hydroxytryptamine (serotonin) receptor 1A 0.33 34.05 4.56 4.21 16.71 1.56 5.63 

HTR2A 5-hydroxytryptamine (serotonin) receptor 2A 0.83 5.08 14.31 5.77 17.06 1.44 5.40 

IL10 Interleukin 10 0.23 2.74 3.10 3.79 9.78 0.66 3.64 

IL18 Interleukin 18 (interferon-gamma-inducing factor) 1.51 1.05 1.99 1.84 2.56 0.66 0.82 

IL1A Interleukin 1, alpha 1.81 1.37 1.59 3.97 1.27 0.68 1.36 

IL1B Interleukin 1, beta 0.64 0.78 0.43 1.23 0.69 0.35 0.92 

IL2 Interleukin 2 0.39 6.03 5.18 3.20 17.23 1.09 6.40 

IL6 Interleukin 6 (interferon, beta 2) 1.31 13.96 22.25 40.95 53.92 1.71 4.64 

ITGAM Integrin, alpha M (complement component 3 receptor 3 subunit) 0.14 2.37 11.24 5.19 13.45 0.35 1.32 

ITGB2 Integrin, beta 2 (complement component 3 receptor 3 and 4 
subunit) 

1.30 2.39 3.16 2.49 4.53 0.64 1.28 

KCNIP3 Kv channel interacting protein 3, calsenilin 0.90 1.83 1.24 2.34 1.21 1.01 1.09 

KCNJ6 Potassium inwardly-rectifying channel, subfamily J, member 6 0.35 4.24 4.47 2.02 10.34 0.65 3.84 

KCNQ2 Potassium voltage-gated channel, KQT-like subfamily, member 2 0.55 3.63 20.53 5.02 5.32 0.35 2.41 

KCNQ3 Potassium voltage-gated channel, KQT-like subfamily, member 3 0.58 3.02 2.30 2.78 9.52 0.66 2.25 

MAOB Monoamine oxidase B 0.90 1.79 1.36 1.40 1.29 1.06 1.35 

MAPK1 Mitogen-activated protein kinase 1 1.29 0.61 0.52 0.76 0.69 0.80 0.46 

MAPK14 Mitogen-activated protein kinase 14 1.70 1.11 0.64 0.92 0.90 0.75 0.66 

MAPK3 Mitogen-activated protein kinase 3 0.73 1.43 1.75 0.78 2.44 1.02 1.33 
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Supplementary Table 2.1. Differentially expressed genes from Human Pain: Neuropathic 
and Inflammatory Array. Expression of genes involved in nociception and inflammation Red 
values indicate 4-fold up-regulation compared to control; blue values indicate 4-fold down-
regulation compared to control. Expression often increased with level of LDL oxidation, with L3 
treated cells typically having the highest expression. Cells treated with peritoneal fluid from 
endometriosis patients (+ENDO) had higher expression compared to control (-ENDO) peritoneal 
fluid samples, providing molecular evidence for increased pain and inflammation associated with 
endometriosis. Additionally, levels of PGE2 receptors and COX-2 were comparable between the 
PGE2 group and oxidatively-modified lipoprotein treated cells. 
 

 

MAPK8 Mitogen-activated protein kinase 8 1.07 0.64 0.64 0.98 0.73 0.57 1.19 

NGF Nerve growth factor (beta polypeptide) 0.21 3.01 10.73 10.67 15.39 0.52 1.59 

NTRK1 Neurotrophic tyrosine kinase, receptor, type 1 1.10 3.17 4.36 5.88 11.55 0.93 4.37 

OPRD1 Opioid receptor, delta 1 0.12 2.19 4.22 2.27 7.33 0.36 1.35 

OPRK1 Opioid receptor, kappa 1 2.39 2.19 1.45 2.23 1.24 0.92 1.39 

OPRM1 Opioid receptor, mu 1 0.31 4.98 4.61 7.63 16.37 1.24 6.74 

P2RX3 Purinergic receptor P2X, ligand-gated ion channel, 3 0.60 5.01 6.13 3.58 15.86 1.46 7.95 

P2RX4 Purinergic receptor P2X, ligand-gated ion channel, 4 0.63 1.55 1.32 1.40 1.16 1.12 1.49 

P2RX7 Purinergic receptor P2X, ligand-gated ion channel, 7 0.70 6.74 3.58 3.10 3.58 0.46 1.14 

P2RY1 Purinergic receptor P2Y, G-protein coupled, 1 2.89 1.49 1.31 1.94 0.93 0.93 1.26 

PDYN Prodynorphin 0.38 3.91 3.92 2.60 13.06 0.82 4.85 

PENK Proenkephalin 0.34 2.94 7.79 5.41 6.80 0.76 4.05 

PLA2G1B Phospholipase A2, group IB (pancreas) 0.27 2.14 2.27 3.53 5.36 1.14 2.84 

PNOC Prepronociceptin 0.38 3.39 9.06 8.58 11.57 1.14 4.41 

PROK2 Prokineticin 2 0.72 2.16 3.51 9.13 6.81 1.14 3.50 

PTGER1 Prostaglandin E receptor 1 (subtype EP1), 42kDa 0.14 12.22 4.26 2.62 4.59 0.61 2.81 

PTGER3 Prostaglandin E receptor 3 (subtype EP3) 2.42 1.78 0.99 2.47 2.33 0.15 0.54 

PTGER4 Prostaglandin E receptor 4 (subtype EP4) 0.87 1.58 0.96 2.00 1.15 0.98 1.16 

PTGES Prostaglandin E synthase 1.33 9.40 20.38 15.04 23.22 0.74 3.45 

PTGES2 Prostaglandin E synthase 2 0.36 1.70 2.09 1.84 1.89 0.87 1.62 

PTGES3 Prostaglandin E synthase 3 (cytosolic) 0.26 1.73 2.36 2.22 2.89 1.57 1.53 

PTGS1 Prostaglandin-endoperoxide synthase 1 (prostaglandin G/H 
synthase and cyclooxygenase) 

0.66 5.88 6.11 5.17 3.84 0.57 1.51 

PTGS2 Prostaglandin-endoperoxide synthase 2 (prostaglandin G/H 
synthase and cyclooxygenase) 

1.65 1.46 0.69 1.44 1.49 0.60 1.41 

SCN10A Sodium channel, voltage-gated, type X, alpha subunit 0.30 4.70 5.18 3.36 17.23 1.09 6.40 

SCN11A Sodium channel, voltage-gated, type XI, alpha subunit 0.24 5.59 3.84 3.02 13.13 0.81 4.75 

SCN3A Sodium channel, voltage-gated, type III, alpha subunit 0.30 4.70 5.18 4.64 17.23 1.09 6.40 

SCN9A Sodium channel, voltage-gated, type IX, alpha subunit 12.72 13.40 12.49 29.21 27.94 3.53 8.29 

SLC6A2 Solute carrier family 6 (neurotransmitter transporter, noradrenalin), 
member 2 

0.30 4.70 5.18 3.20 29.27 1.09 6.40 

TAC1 Tachykinin, precursor 1 1.92 3.30 6.06 12.49 13.04 0.55 2.28 

TACR1 Tachykinin receptor 1 0.32 1.94 1.04 1.83 3.69 0.50 1.36 

TLR2 Toll-like receptor 2 2.63 1.21 1.10 1.76 1.21 0.56 0.89 

TLR4 Toll-like receptor 4 0.75 3.23 3.77 4.50 7.42 0.47 1.50 

TNF Tumor necrosis factor 0.50 9.11 7.83 10.89 8.74 0.54 2.54 

TRPA1 Transient receptor potential cation channel, subfamily A, member 
1 

1.32 1.86 1.68 3.04 4.65 0.37 2.66 

TRPV1 Transient receptor potential cation channel, subfamily V, member 
1 

0.81 1.34 1.25 1.90 1.33 0.34 1.13 

TRPV3 Transient receptor potential cation channel, subfamily V, member 
3 

0.81 1.75 1.63 2.27 1.43 0.19 0.77 
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ABSTRACT 

Endometriosis is a chronic, painful condition with unknown etiology. A differential expression 

of microRNAs (miRNAs) in the endometriotic tissues from women with endometriosis with pain 

compared to those without suggested a plausible role for miRNA or epigenetic mechanisms in 

the etiology of endometriotic pain. The peritoneal milieu is involved in maintenance of 

endometriotic lesion and nociception. We recently showed the mechanistic role for oxidized-

lipoproteins (ox-LDLs) present in peritoneal fluid (PF) in endometriosis and pain. We explored 

the possibility of ox-LDL modulating the expression of miRNAs in a manner similar to PF from 

women with endometriosis.  Expression levels of miRNAs and their predicted nociceptive and 

inflammatory mRNA targets were determined in PF and ox-LDL-treated human endometrial cell 

lines. Samples from IRB-approved and consented patients with and without endometriosis or 

pain were used. These were compared to endometrial cell lines treated with various forms of 

oxidized-lipoproteins. RNA (including miRNAs) were isolated from treated endometrial cells 

and expression levels were determined using commercial miRNome arrays. Cell lysates were 

used in immunoblotting for inflammatory proteins using a protein array. Twenty miRNAs 
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including isoforms of miR-29, miR-181 and let-7 were mutually differentially expressed in cells 

treated with PF from endometriosis patients with pain and those treated with ox-LDL 

components. The ox-LDL and endo-PF treatment also produced significant overexpression of 

microRNA predicted target genes nerve growth factor, interleukin-6 and prostaglandin E 

synthase and overexpression of their downstream protein targets Mip1a and MCP1. This study 

showed similarities between miRNA regulation in PF from endometriotic women and ox-LDLs 

present in abundance in the PF of these women.  Key miRNAs responsible for targeting 

nociceptive and inflammatory molecules were downregulated in the presence of ox-LDLs and 

endo-PF, thus playing a role in the etiology of endometriotic pain. These redox-sensitive 

miRNAs can be of potential use as targets in the treatment of endometriosis-associated pain. 

INTRODUCTION 

Endometriosis is a gynecological disorder that affects 5-15% of women of childbearing 

age and 3-5% of post-menopausal women worldwide (Giudice, 2010; Vigano, Parazzini, 

Somigliana, & Vercellini, 2004). It is defined by the presence of endometrial cells implanted in 

an extra-uterine location and can be asymptomatic or present with a wide range of symptoms, 

including infertility and a number of chronic pelvic pain conditions (Greene et al., 2016; Taylor 

et al., 2012). Despite the intensity of some of these symptoms, endometriosis often goes 

undiagnosed for several years (Hadfield, Mardon, Barlow, & Kennedy, 1996; Kavoussi, Lim, 

Skinner, Lebovic, & As-Sanie, 2016).  

Numerous mechanisms of endometriosis-associated pain and inflammation have been 

proposed over the years (Laux-Biehlmann, d'Hooghe, & Zollner, 2015; B. D. McKinnon, 

Bertschi, Bersinger, & Mueller, 2015).  It is also known that endometriosis is a hormonal 

disorder, and heightened levels of estrogen are associated with increased inflammation and 
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nociception (Liang & Yao, 2016; Zhao et al., 2015). Prostaglandin E2 is an example of an 

overexpressed inflammatory nociceptive molecule involved in pain associated with 

endometriosis which can have further downstream effects (Arosh et al., 2015; Y. Liu et al., 

2011). It is also believed that endometriotic lesions release chemotactic molecules such as 

monocyte chemotactic protein-1 (MCP-1) and fractalkine (CX3CL1) that attract immune cells 

into the peritoneal cavity (Ahn et al., 2015; Y. Wang et al., 2014). These cells trigger the 

secretion of more cytokines and growth factors such as IL-6, IL-8, and TNF-α, further promoting 

lesion growth (X. Cao, Yang, Song, Murphy, & Parthasarathy, 2004; Hou, Zhou, Wang, & Li, 

2016; Na et al., 2011; Rong et al., 2002; Santanam et al., 2013). All of these molecules 

accumulate in the peritoneal fluid (PF), creating a dynamic milieu of inflammatory and 

nociceptive mediators which plays a role in the etiology of endometriosis (Bedaiwy & Falcone, 

2003; Kyama et al., 2009; Mahnert, Morgan, Campbell, Johnston, & As-Sanie, 2015; B. D. 

McKinnon et al., 2015).  

Over the years, our laboratory has provided evidence for the role of oxidative stress in the 

etiology of endometriosis and its associated pain (Murphy, Santanam, & Parthasarathy, 1998; 

Santanam et al., 2013; Santanam, Murphy, et al., 2002; Santanam, Song, et al., 2002). We 

showed increased presence of oxidatively modified proteins in the PF and 

endometrium/endometriotic tissue (Murphy, Santanam, Morales, et al., 1998; Shanti, Santanam, 

Morales, Parthasarathy, & Murphy, 1999). Oxidatively modified LDLs present in the PF 

increased the proliferation of endometrial cells and the expression of MCP-1 (Rong et al., 2002). 

We recently showed the nociceptive role for oxidatively modified low-density lipoproteins (ox-

LDLs) in endometriosis-associated pain (K. Ray et al., 2015) and the ability of antioxidant 

supplementation to lower inflammation and chronic pelvic pain in women with endometriosis 
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(K. Ray et al., 2015; Santanam et al., 2013; Santanam, Zoneraich, & Parthasarathy, 2016). 

Though many nociceptive molecules including ox-LDLs have been identified, the mechanism 

through which these molecules promote endometriosis-associated pain is still unclear. 

The etiological role of epigenetics in health and disease is ever-expanding. This concept 

of mRNA alterations without changes to the gene sequences has become part of the paradigm in 

studying many disease conditions in humans (Bird, 2007; Calicchio, Doridot, Miralles, Mehats, 

& Vaiman, 2014). Often included as a regulator in epigenetics are microRNAs (miRNAs), short 

RNAs (about 23 nucleotides) which are capable of regulating gene expression at the 

transcriptional, post-transcriptional, and translational levels by binding to complementary 

sequences on target mRNA (Andersen et al., 2014; Bartel, 2009). It has long been stated that 

miRNA regulation occurs in one of two ways: i) the target mRNA is degraded when a miRNA 

seed sequence perfectly complements with the target mRNA sequence, or ii) translation is 

impaired when there is imperfect matching between the miRNA-mRNA sequences, leading to 

gene silencing (Deng et al., 2008; Mari-Alexandre et al., 2016). However, recent discoveries 

provide evidence that miRNAs in eukaryotes, zebrafish, and Drosophila predominantly repress 

translation of new mRNA targets, succeeded by deadenylation and degradation of the targets 

(Burney & Giudice, 2012; K. L. Ray et al., 2014). Interestingly, gene activation by miRNAs is 

also plausible. This can occur directly via targeting of the mRNA by miRNA, or indirectly by 

repressing nonsense-mediated RNA decay (Vasudevan et al., 2007).  

MiRNAs have a crucial role in cellular homeostasis, which explains why alterations in 

their expression or function have been associated with diseased states including certain cancers 

(Jin et al., 2014; X. Y. Li et al., 2014; C. Liu et al., 2016), neurodegenerative disorders (Kumar et 

al., 2013; Majidinia et al., 2016; Miller et al., 2012), and cardiovascular and respiratory 
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conditions (JF, Neylon, McGorrian, & Blake, 2016; X. Wang, Du, & Li, 2013; Zhou et al., 

2016). Fluid-based miRNA (serum, saliva, sputum, cerebrospinal fluid, plasma, whole blood, 

and urine) profiling could provide invaluable information for studies where the disease is not 

derived from only one type of cell or a specific type of cell. This possibility has opened doors for 

non-invasive diagnostic techniques in various disease states (Bhomia, Balakathiresan, Wang, 

Papa, & Maheshwari, 2016; Igaz & Igaz, 2015; Leidinger et al., 2011; Rajasekaran, Pattarayan, 

Rajaguru, Sudhakar Gandhi, & Thimmulappa, 2016; Umemura & Kuroki, 2015).  Hence 

miRNAs are considered good therapeutic targets in cancer and cardiovascular disease (C. Li, 

Feng, Coukos, & Zhang, 2009; Mishra, Tyagi, Kumar, & Tyagi, 2009; L. M. Tsai & Yu, 2010).  

Very few studies have explored the possible association between miRNA-mediated 

regulation and reproductive diseases such as endometriosis. Recent studies have speculated that 

endometriosis is an epigenetic disease (Borghese, Zondervan, Abrao, Chapron, & Vaiman, 2016; 

S. W. Guo, 2009; Izawa, Taniguchi, Terakawa, & Harada, 2013). MiRNAs play a major role in 

the development of endometriotic lesions by contributing to mechanisms involving hypoxic 

injury, inflammation, tissue repair, cell proliferation, extracellular matrix remodeling, and 

angiogenesis (Mari-Alexandre et al., 2015; Ohlsson Teague et al., 2009). In endometriosis, 

miRNA profiling studies have compared ectopic versus eutopic endometrial tissues (Filigheddu 

et al., 2010; Ohlsson Teague et al., 2009; Pan & Chegini, 2008), often concluding that many 

miRNAs are differentially expressed between the two groups and target genes closely associated 

with endometriosis. Studies investigating miRNA profiles in eutopic tissues from women with 

and without endometriosis (Burney et al., 2009; Hawkins et al., 2011; Laudanski et al., 2013) 

showed a trend of downregulated miRNA levels in tissues from women with endometriosis. 

Wang and colleagues also showed global downregulation in the circulating levels of miRNAs in 
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the serum of women with endometriosis, with 91% of significantly differentiated miRNAs 

showing decreased expression in endometriosis patients (L. Wang et al., 2016). There are very 

few studies that have measured miRNAs in the peritoneal fluid (PF), which is the most dynamic 

component and major player in the etiology of endometriosis (Castro et al., 2010; Y. Liu et al., 

2011; Loh et al., 1999).  

With our continued interest in understanding the etiology of the pain associated with 

endometriosis, we profiled miRNAs in endometriotic tissues obtained from women with 

endometriosis and pain and compared it to eutopic tissue from women without endometriosis.  

Since we recently identified that ox-LDLs parallel nociceptive responses similar to PF from 

women with endometriosis-associated pain (K. Ray et al., 2015), we hypothesized that these 

lipoprotein components function through modulating miRNAs that regulate inflammatory and 

nociceptive genes in endometriosis. We compared the miRNA profile of PF treated 

endometriotic cells to Ox-LDL treated cells. We validated miRNA regulation by assessing the 

levels of their predicted target genes. Our results identified miRNAs that play a role in 

endometriosis-associated pain. Targeting these redox-sensitive miRNAs may be a novel 

approach to treat endometriosis-associated pain.  

MATERIALS AND METHODS 

Human Subject Participants 

Women ages 21 to 60 years undergoing tubal ligation or having non-endometriosis 

disorders (controls) or patients with endometriosis- endo (laparoscopically diagnosed or patients 

with symptoms followed by pathological confirmation) were recruited from the Obstetrics-

Gynecology clinic at Cabell Huntington Hospital, Joan C Edwards School of Medicine, Marshall 

University, in Huntington, WV. This HIPAA compliant study was approved by the Institutional 
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Review Board of the Marshall University School of Medicine and was carried out according to 

the principles of the Declaration of Helsinki. All patients were consented prior to the study. All 

women completed a gynecologic/infertility history form, a pre-operative quality of life 

questionnaire and assessment of pain using a visual analog scale for assessment of endometriosis 

associated pain (dysmenorrhea, non-menstrual pelvic pain, dyspareunia, and dyschesia) (adapted 

from the validated International Pelvic Pain Society’s Pelvic Assessment Form). Date of their 

last menstrual period was used to assess their cycle time. The inclusion criteria included women 

ages 21-60 years old, with normal menstrual cycles and otherwise in normal health (except for 

pain and endometriosis) who have not been on any hormonal medication for at least one month 

before sample collection.  Exclusion criteria included subjects with current medical illnesses 

such as diabetes, cardiovascular disease, hyperlipedemia, hypertension, systemic lupus 

erythematosis or rheumatologic disease, positive HIV/AIDS, active infection.  Subjects were 

asked to stop multivitamins that contain high levels of antioxidants and anti-inflammatory 

medications one month prior to sample collection.  

Peritoneal Fluid Collection 

Peritoneal fluid (PF) (devoid of blood contamination) was collected on ice from all 

women during laparoscopic surgery.  Peritoneal fluid was spun at 2000xg to remove any cellular 

debris. The supernatant was used immediately for studies or stored in a -800C freezer for future 

use. 

Endometrial Tissue Collection and RNA Isolation 

Endometrial (eutopic) tissues from control patients and ectopic endometriotic tissues 

from endometriosis (ovarian or peritoneal endometriosis) patients were removed during 

laparoscopy/laparotomy by a qualified physician. Biopsy fragments were immediately placed in 
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RNAlater solution (Qiagen, Gaithersburg, MD) and subsequently stored in a freezer at -80°C. 

RNA extraction from 100 mg of tissue (eutopic and ectopic) was carried out using Qiazol Lysis 

Reagent (Qiagen). Tissues were homogenized using zirconium oxide beads in a Bullet Blender® 

homogenizer (Next Advance, USA) and RNA was isolated using the Qiagen miRNeasy Mini Kit 

following the manufacturer’s recommendations. The quantity and quality of RNA were 

measured in the NanoDrop 2000 spectrophotometer (Thermo Scientific, USA).  

Cell Culture and RNA Isolation 

Ishikawa cells, a human (39-year-old woman) established endometrial cell line (Sigma-

Aldrich, St. Louis, MO), were cultured in T75 flasks in complete media (DMEM/F12, 10% FBS, 

1% Pen/Strep, 1% L-glutamine). These cells were used because they express characteristics 

similar to those of mature endometrial epithelial cells (Bulun et al., 2006; Cho, Mutlu, Zhou, & 

Taylor, 2016; Nishida, Kasahara, Kaneko, Iwasaki, & Hayashi, 1985). Approximately 70% 

confluent cells were treated with either 25 µg of various LDL preparations (ox-LDLs, as 

described previously (K. Ray et al., 2015)) or  1% PF from patients for 48 hours in a DMEM/F12 

media containing 1% charcoal-stripped FBS. Briefly, LDL isolated from plasma (human 

volunteers) was oxidized using copper. Extent of oxidation was determined by the formation of 

conjugated diene at OD 234 nm. The oxidation process was terminated at specific time points to 

generate various forms of ox-LDL preparations: (a) native LDL (L0), (b) minimally-modified 

LDL (L1, usually terminated at the end of the lag time), (c) oxidized LDL (L2, after the 

oxidation has reached its plateau) and (d) completely or fully oxidized LDL (L3, after 24 hours 

of oxidation) (Parthasarathy, Auge, et al., 1998; Parthasarathy et al., 2010; Parthasarathy, 

Santanam, et al., 1998; K. Ray et al., 2015). Patient peritoneal fluid (PF) groups were 

+endo/+pain (YY), +endo/-pain (YN), and –endo/-pain (NN, “control fluid”). The concentrations 
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chosen were selected from our previous published studies (K. Ray et al., 2015). At the end of 48 

hours, cells were collected using Qiazol reagent and RNA was isolated using the Qiagen 

miRNeasy Mini Kit. The quantity and quality of RNA were measured in the NanoDrop 2000 

spectrophotometer. Cells were also collected in RIPA buffer containing protease inhibitors and 

protein concentrations were measured using a modified Lowry protocol.  

RT2 MiRNome Array 

Total RNA (which includes miRNA) isolated from the tissues and treated cells using 

MiRNeasy kit (Qiagen) were used. cDNA synthesis from 2 µg of each sample was performed 

using miScript II RT Kit (Qiagen). MiRNA expression was analyzed in the cDNA samples using 

the commercial Human miRNome PCR Array (MIHS-3216Z; Qiagen) on the Roche LightCycler 

480 system (Roche, Indianapolis, IN). Fold change was determined using Pfaffl equation (2-ddCt) 

for all groups compared with eutopic tissue from control women (tissues) or media control (cells) 

using the manufacturer’s algorithm, which uses a t-test as the default statistics to compare 

differences using five SNORDs and RNU6 as housekeeping genes.  A p-value less than 0.05 was 

used to identify significantly differentially expressed miRNAs in treated Ishikawa cells or in 

endometriotic tissues.  

Real-Time PCR Analysis for Gene Expression 

cDNA synthesis from 1 µg of RNA isolated from each cell treatment was prepared using 

iScript cDNA Synthesis Kit (Biorad, Hercules, CA). Expression of nerve growth factor (NGF); 

interleukin-6 (IL-6); cannabinoid receptor 1 (CNR1); Sodium Channel, Voltage Gated, Type XI 

Alpha Subunit (SCN11A); and prostaglandin E synthase 3 (PTGES3) in cells were analyzed 

using the Applied Biosystems OneStepPlus Real-Time PCR system (Thermo Scientific). Primers 

used in the experiment are listed in Supplementary Table 3.1. Fold change was determined using 
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Pfaffl equation (2-ddCt) for all groups compared with 1% charcoal-stripped serum media alone. A 

p-value less than 0.05 was used to identify significantly differentially expressed mRNAs in 

Ishikawa cells treated with PF and ox-LDLs compared with the charcoal-stripped media treated 

cells (control group).  

Immunoblotting 

Cell lysates were prepared from PF or ox-LDL-treated Ishikawa cells using RIPA buffer 

containing protease inhibitors. The Human Neuro Discovery Array C1 (RayBiotech, Inc., 

Norcross, GA), which includes 20 human neurologically relevant proteins belonging to immune 

response and inflammation pathways was used for the detection of changes in target proteins. 

This array was chosen because it includes several proteins that play a role in neuronal and 

peripheral nociception and inflammation. The manufacturer’s suggested protocol for analysis 

was followed. In brief, the provided membranes were blocked for 30 minutes prior to sample 

treatment and then incubated with samples overnight at 4°C. Following washing, the membranes 

were then incubated with a biotinylated detection antibody cocktail overnight (4°C), washed, and 

incubated with horseradish peroxidase (HRP)-conjugated streptavidin. Following additional 

washing steps, the membrane was incubated in the detection buffer followed by imaging of the 

developed proteins using the ChemiDoc system (Biorad). Results were analyzed using the 

manufacturer’s Analysis Tool Excel-based software (RayBiotech, Inc.).   

Targetscan and Ingenuity Pathway Analysis 

TargetScan Human 7.0 online database (www.targetscan.org) was used to identify 

miRNA target genes. The list of differentially expressed miRNAs in PF and ox-LDL-treated 

cells was uploaded into Ingenuity Pathway Analysis (IPA, Qiagen), along with the cytokines 
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analyzed using the protein array. IPA was used to identify any relationship among the 

differentially expressed miRNAs and cytokines, either via direct or indirect interactions. 

Statistical Analysis 

Prism software (GraphPad, Inc., La Jolla, CA) was used for analysis of non-array qPCR 

data in human tissue and cell culture studies. All values were expressed as mean ± standard error 

of the mean (SEM). One-way ANOVA followed by Tukey’s post-hoc test was used to detect 

differences in relative gene expression among treatment groups. P values less than 0.05 were 

considered significant. 

RESULTS 

MiRNome Analysis in Endometrial Tissues  

A human miRNome qPCR array consisting of primers for over 750 identified human 

miRNAs were used to detect changes in global miRNA expression in eutopic endometrial tissue 

from control women (control, n=5) and ectopic endometriotic tissues from endo women with 

pain (endo, n=4). Statistical analysis was performed using the online software portal available at 

the manufacturer’s website (SA Biosciences, Valencia CA). Student’s t-test (the default 

statistical test used by the manufacturer) showed that thirty-seven miRNAs were significantly 

differentially expressed (p<0.05) between control and endo tissues (Figures 3.1A and 3.1B). As 

shown in Figure 3.1C, twenty-nine of these miRNAs were upregulated in endometriotic tissues 

compared to controls (shown in red) while eight were downregulated (shown in green). The 

potential mRNA targets of the 37 significantly altered miRNAs was determined using the 

TargetScan Human 7.0 online database (www.targetscan.org) and Ingenuity Pathway Analysis 

(IPA, www.ingenuity.com), with emphasis on target genes that played a functional role in: (i) 

Endometriosis – Do these miRNAs target any genes that are already associated with the disease 
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state? (ii) Pain and inflammation –Do these miRNAs target any neuropathic or inflammatory 

mediators or regulators? (iii) Epigenetic mechanisms – Do these miRNAs target any genes 

associated with epigenetic markers? 

  TargetScan and IPA analysis narrowed the list to the following miRNAs that were 

closely associated with the afore-mentioned pathways: hsa-miR-29a, hsa-miR-148a, hsa-miR-

100, hsa-miR-548l, and hsa-let-7g (Table 3.1). Human miR-29a, miR-148a, miR-100, and let-7g 

were upregulated in endometriotic tissues compared to control tissues, while the expression of 

miR-548l was significantly lower in endometriotic tissues than in control tissues. Each of these 

miRNAs has been shown to target key genes that play a role in endometriosis, pain, and/or 

epigenetics.  

The mRNA expression of few of the miRNA target genes—B-cell lymphoma 2 (BCL2), 

DNA methyltransferase 3B (DNMT3B), and the mu-opioid receptor (OPRM1)—was measured 

using RT-qPCR. Compared to control tissues, the expression of BCL2 (fold change = 0.75), 

DNMT3B (fold change = 0.57), and OPRM1 (fold change = 0.51) were all lower in tissues from 

endometriosis patients.  
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Figure 3.1. Differentially expressed miRNAs in endometrial tissues. Significant Differentially 
expressed miRNAs in ectopic endometriotic tissues (endo, n=4) compared to eutopic control 
endometrium (control, n=5) based on the Qiagen MiRNome qPCR array. Fold change 
determined by SA Biosciences software. A) Volcano plot comparing the fold change (difference) 
in miRNA expression between control and endo tissues, as well as the corresponding p-values. 
Dots above the blue horizontal line indicate p>0.05. Pink vertical lines indicate 2-fold decrease 
and increase in expression. B) Scatter plot comparing control and endo tissues. The black line 
indicates fold changes (2-ΔCt) of 1. The red lines indicate the fold-change in gene expression 
threshold, defined as 4. C) List of the 37 differentially expressed miRNAs.  Red cells indicate 
upregulation of miRNA expression in endo tissues while green cells indicate downregulation of 
expression in endo tissues compared to control tissues. Significance determined by a p-
value<0.05.  
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Table 3.1. List of miRNAs with functional role in endometriosis and/or nociception. 
TargetScan and IPA software analysis were used to identify target genes with functional role in 
inflammatory/nociceptive, epigenetic and endometriosis. Bolded genes were further investigated 
in this study. Fold change values were based on the Qiagen MiRNome qPCR array and 
associated SA Biosciences software. RT-qPCR analysis showed that compared to control tissues, 
the mRNA expression of BCL2 (fold change = 0.75), DNMT3B (fold change = 0.57), and 
OPRM1 (fold change = 0.51) were lower in endometriotic tissues, as indicated by ↓. For all 
tissue micronome array data, p<0.05.  
 
MiRNome Analysis in Endometrial Cells Treated with Peritoneal Fluid 

Since we and others have shown a prominent role for PF in pain associated with 

endometriosis (Ahn et al., 2015; Bedaiwy & Falcone, 2003; Kyama et al., 2009; B. D. McKinnon 

et al., 2015; K. Ray et al., 2015), we next determined the changes in the miRNA profile in 

endometrial cells treated with PF from patients with and without endometriosis and/or pain. 

MiRNome array showed 89 miRNAs to be differentially expressed between cells treated with PF 

from patients with no endometriosis (control, NN-PF) compared to PF from patients with 

endometriosis, with (YY-PF) and without (YN-PF) pain (Supplementary Table 3.2). It is 

interesting to note that there was upregulation of only two of the 89 differentially expressed 

miRNAs in cells treated with YY-PF. The majority (98% of YY-PF, 62% of YN-PF) of the 

miRNAs were downregulated when the patient had endometriosis. 

MiRNome Analysis in Endometrial Cells Treated with Oxidatively-Modified Lipoproteins 

We had recently shown that oxidatively modified LDLs (ox-LDLs) are powerful 

nociceptive mediators and are present in abundance in the PF of women with endometriosis (K. 
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Ray et al., 2015). We thus determined the ability of native LDL (L1) and various forms of ox-

LDL preparations (minimally modified LDL-L2, oxidized LDL-L3 and fully oxidized LDL-L4) 

to alter the miRNA profile in endometrial cells and compared it to that seen in PF treated cells. 

Figure 3.2 is a Venn diagram that represents the distribution of significantly differentially 

expressed miRNAs in ox-LDL- and PF-treated cells.  

 
Figure 3.2. Comparison of differentially expressed miRNAs in PF and Ox-LDL treated 
endometrial cells. Venn diagrams indicate the numbers of miRNAs that are significantly 
differentially expressed in treated cells compared to media control (p<0.05). A) Distribution of 
miRNAs that were significantly differentially expressed PF-treated cells. The largest 
commonality (n=24) was between endo PF groups (YY-PF and YN-PF). B) Distribution of 
miRNAs that were significantly differentially expressed in ox-LDL-treated cells. C) Distribution 
of significant miRNAs in endo PF-treated and ox-LDL treated cells. Twenty-two miRNAs 
(listed) were significantly expressed in all treatment groups except NN-PF. Eleven miRNAs 
(listed) were only significant in YY-PF and L1 treated cells. 
 
MiRNA Target Genes in PF or ox-LDL Treated Cells 

To assess the potential functional relevance of the differentially expressed miRNAs in 

ox-LDL or PF treated cells, RT-qPCR was performed to determine the levels of target genes of 
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select miRNAs involved in nociceptive/inflammation pathways. Figure 3.3 shows the expression 

of nociceptive genes, nerve growth factor (NGF), cannabinoid receptor 1 (CNR1), and sodium 

voltage-gated channel alpha subunit 11 (SCN11A), as well as inflammatory genes interleukin 6 

(IL6) and prostaglandin E synthase 3 (PTGES3) in cells treated with ox-LDLs and PF. In 

general, the presence of the ox-LDLs resulted in an increase in gene expression, with the ox-

LDL (L2) treatment group having significantly higher expression of NGF (p<0.001), PTGES 

(p=0.0113), and IL6 (p<0.001). No significant difference in the expression of these target genes 

were seen in cells treated with NN-PF and cells treated with YY-PF or YN-PF, but there was a 

trend towards higher expression of CNR1 and SCN11A in cells treated with PF from 

endometriosis patients (YY-PF and YN-PF). Similar trends in gene expression were observed in 

the mu opioid receptor (OPRM1) and fractalkine ligand (CX3CL1). No statistical significance in 

expression was observed among the treatment groups, but there was a 2 to 3-fold induction of 

CX3CL1 by ox-LDLs.  
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Figure 3.3. mRNA expression of miRNA targeted genes. mRNA expression of neuropathic 
and inflammatory target genes in endometrial cells treated with PF and oxidatively-modified 
LDLs as determined by RT-qPCR. A) Expression of CNR1 (targeted by miR-29a), SCN11A 
(targeted by let-7g), OPRM1 (targeted by let-7 and miR-548l), and CX3CL1 (targeted by miR-
29a). No significant differences in expression were observed with these genes. B) NGF (targeted 
by let-7g) was significantly differentially expressed among treatment groups (one-way ANOVA 
p<0.001). Expression in cells treated with L1 and L2 was significantly higher than expression in 
other treatment groups. Expression of PTGES3 (targeted by miR-148a) across sample groups 
was also significant (p=0.0113). Treatment with L2 resulted in overexpression of PTGES3. C) 
Expression of IL6 (targeted by let-7g) across sample groups (p<0.0001). Treatment with L3 
resulted in IL6 expression that was significantly higher than the NN-PF and YY-PF treatment 
groups, while treatment with L2 resulted in significantly higher expression than all treatment 
groups other than L3. 
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Translational Regulation of Differentially Expressed miRNAs  

MicroRNAs modulate both the transcriptional and translational levels of their target genes, thus 

regulating gene pathways.  The protein levels of genes involved in nociceptive and inflammatory 

pathways were measured in endometrial cells treated with PF or ox-LDLs using the Human 

Neuro Discovery Array (Ray Biotech, Inc.). As shown in the heat map (Figure 3.4A), many 

cytokines had similar expression across all treatment groups except for MCP1 (CCL2) and 

monocyte inflammatory protein-Mip1α (CCL3). Densitometric analysis showed a 14.6-fold and 

8.9-fold, respectively, increase in expression of MCP1 and Mip1α in cells treated with PF from 

patients with endometriosis and pain (YY-PF) compared to media control. Expression of MCP1 

and Mip1α in YN-PF treated cells was very similar to that seen in control media (0.83-fold and 

0.97-fold, respectively). These two proteins were also overexpressed by 2.78-fold and 1.08-fold 

in L2-treated cells, with expression trending downward as LDL oxidation increased (Figure 

3.4B).  
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Figure 3.4. Protein array of inflammatory and nociceptive targets. The RayBiotech Human 
Neuro Discovery Array C1 was used to determine the expression of 20 human 
immunomodulators in treated endometrial cells. A) Heat map showing relative expression of 
inflammatory and nociceptive proteins in endometrial cells treated with PF and ox-LDLs (n=3). 
PF was obtained from patients with neither endometriosis nor pain (PF-NN, n = 6), with 
endometriosis and pain (PF-YY, n = 6), and with endometriosis and no pain (PF-YN, n = 4). B) 
Fold change ratio for MCP1 and Mip1a was calculated in comparison to media control (n = 4). 
While cells treated with PF-YY typically had cytokine expression that was lower than or similar 
to other cells treatment groups, MCP1 and Mip1α showed an exaggerated increased trend. A 
similar trend was seen in protein from cells treated with ox-LDLs, particularly native LDL (L0). 
Two-way ANOVA determined p>0.05.  
 
Pathway Analysis to Identify Associations between Differentially Expressed miRNAs and 

Nociceptive/Inflammatory Targets 

Figure 3. 5 summarizes the potential interactions between the miRNAs differentially 

expressed in PF and ox-LDL treated cells and their predicted targets, as determined by RT-qPCR 

arrays or protein array.  Predicted targets of let-7 family, miRNA10 a/b, -181, -98, -19 and -374 

showed association in the treated cells. Mip1α, is a documented target of let-7 (TargetScan.org), 

of which two isoforms (let-7i/g) were significantly downregulated in PF and ox-LDL-treated 
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endometrial cells. MCP1 is a target of miR-374 (IPA), whose decreased expression was only 

significant in the L2 cell treatment group. 

 

Figure 3.5. MiRNAs targeting key inflammatory molecules in endometrial cells treated 
with peritoneal fluid and ox-LDLs. TargetScan and IPA analysis was used to identify 
associations between the inflammatory/nociceptive proteins determined using protein array and 
differentially expressed miRNAs as determined by the Human MiRNome array. ↓/↑ indicates 
significant miRNA expression in YY-PF and L1-treated cells. ↓↓/↑↑ indicates an expression 
change of at least 4-fold. For all noted miRNA expression differences, p<0.05.  DNF (Greaves et al., 2015; Wessels, Kay, Leyland, Agarwal, & Foster, 2016; Wessels, Leyland, Agarwal, & Foster, 2015), IL10 (Malutan et al., 

2017; Suen et al., 2014), IL1a (Sapkota et al., 2015; Yin et al., 2006), Tnfa (B. McKinnon, Bersinger, Wotzkow, & Mueller, 2012; Pizzo et al., 2002; Scholl, Bersinger, Kuhn, & Mueller, 2009), NGF (Anaf et al., 2002; Barcena de Arellano et al., 2011), Mip1a (Na et al., 2011; Yu et al., 2008),1 (Na et al., 2011; Pizzo et al., 2002) 

DISCUSSION 

The role of epigenetic mechanisms, including miRNA regulation, in endometriosis is still 

not completely understood and is an area of intense investigation.  In the past few years, there 

has been a tremendous interest among endometriosis researchers to identify miRNA signatures 

that play a role in the pathophysiology of endometriosis. This led to a series of studies 

demonstrating differences in miRNA expression between paired ectopic and eutopic endometrial 
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tissues versus normal endometrium (Burney et al., 2009; Filigheddu et al., 2010; Hawkins et al., 

2011; Laudanski et al., 2013; Ohlsson Teague et al., 2009; Pan & Chegini, 2008). The majority 

of these miRNAs are located in the genomically unstable sites, lending to their targeting of 

oncogenes, tumor suppressor genes, angiogenesis, and genes associated with inflammation or 

immune function (Bartel, 2004; Pan & Chegini, 2008). Functional pathway analyses of miRNA 

targets showed alterations in genes such as aromatase (CYP-19) and COX-2 as well as those 

involved in apoptosis and cell-signaling to be differentially expressed in endometriosis 

(Hirakawa et al., 2016; Long, Wan, La, Gong, & Cai, 2015; Mari-Alexandre et al., 2015; 

Ohlsson Teague et al., 2009; Okamoto et al., 2015). For example, the downregulation of 

migration inhibitory factor (MIF) in ectopic endometriotic lesions compared to eutopic 

endometrium has been attributed to the upregulation of miR-451(Graham, Falcone, & Nothnick, 

2015). Similarly,  miR-93, which targets MMP3 and VEGFA, genes involved in angiogenesis 

and shown to inhibit proliferation, invasiveness, and migration of endometrial stromal cells, was 

underexpressed in ectopic tissues when compared to control endometrium (Lv, Chen, & Liu, 

2015). Validation studies using these tissues or isolated primary endometrial cells showed that 

several of these miRNAs were influenced by ovarian steroids (Nothnick & Healy, 2010; Pan, 

Luo, Toloubeydokhti, & Chegini, 2007; Toloubeydokhti, Pan, Luo, Bukulmez, & Chegini, 

2008).  Though these studies speculated the association between the differentially expressed 

miRNAs to pathophysiological changes in endometriosis, none of these studies directly delved 

into whether any of these miRNAs may be playing a regulatory role in pain associated with 

endometriosis. 

 There are very few studies in the literature that have shown a direct relationship between 

miRNA changes and pain (Bai, Ambalavanar, Wei, & Dessem, 2007; Bezerra, Lima, Girao, 
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Teixeira, & Graca, 2008; Burney et al., 2009; Chehade & Sampson, 2008; Sanchez Freire et al., 

2010). Bai et al recently showed down-regulation of several miRNAs in the trigeminal ganglion 

neurons following inflammatory muscle pain (Bai et al., 2007). Recent investigations have 

shown that expression of miR-100 and miR-29a in tissues of the central nervous system (spinal 

cord and dorsal root ganglion, respectively) are associated with neuropathic and inflammatory 

pain in animal models (Kynast, Russe, Geisslinger, & Niederberger, 2013; Qureshi et al., 2015). 

In our study, we observed that both these miRNAs were significantly upregulated in ectopic 

lesions compared to the control tissues, along with 27 other miRNAs. Additionally, we found 

that mRNA targets of these miRNAs-BCL2, DNMT3B, and OPRM1-were also downregulated in 

the endometriotic tissues. 

The peritoneal milieu  in women with endometriosis expresses several mediators, such as 

PGE2, that play an important role in pain (Barcena de Arellano et al., 2011; Barcena de Arellano 

& Mechsner, 2014; Morotti et al., 2014; Neziri et al., 2014; Santanam et al., 2013). The 

cyclooxygenase (COX-2) enzymes that synthesize prostaglandins are highly expressed in 

endometriotic glands (Hayashi et al., 2013; Jana, Chatterjee, Ray, DasMahapatra, & Swarnakar, 

2016; Kilico, Kokcu, Kefeli, & Kandemir, 2014; Y. Liu et al., 2011) and their increased 

expression strongly correlates with pathological abnormalities (Buchweitz et al., 2006; Cho et 

al., 2010; H. Y. Kim et al., 2012; H. Wang, Sun, Jiang, Liu, & Wang, 2016). However, the 

contribution of the PF milieu to the observed miRNA changes during endometriosis is not clearly 

known. In a recent study, exposure of primary (eutopic and ectopic) cells to PF from 

endometriosis patients compared to control patients, caused lower expression of a number of 

miRNAs that played a role in  angiogenesis (e.g. VEGFA) (Braza-Boils et al., 2015). Our study 

showed similar trends in relation to miRNAs that target inflammation and nociceptive pathways. 
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We did not observe significant overlap between miRNAs altered in PF-treated cells and those 

that were differentially expressed in eutopic/ectopic endometriotic tissues. This lack of overlap 

might be related to time of exposure to PF. Most of our cell treatments are 48 hour exposures; 

however, the endometriotic tissues obtained from patients have been exposed to PF for months 

or even years. However, endo PF or ox-LDL treated cells seemed to cause a global 

downregulation of miRNA expression compared to untreated cells. Additionally, there were 

many miRNAs that were similarly (up or down) regulated in cells treated with endo PF and those 

treated with ox-LDLs (Figure 3.2). The ox-LDL treatment also produced significant 

overexpression of nociceptive and inflammatory genes NGF, PTGES3, and IL6. While it did not 

reach significance, the expression of fractalkine (CX3CL1) and OPRM1 was of interest due to 

the established association between these genes  and the progression of endometriosis (Hou et 

al., 2016; Shimoya et al., 2005; Y. Wang et al., 2014).  

 Pathway analysis using TargetScan and IPA analysis identified protein targets of the 

differentially expressed inflammatory and nociceptive genes, such as the induction of MCP-1 by 

IL-6  (Arendt et al., 2002; Biswas et al., 1998; Choi, Rotimi, O'Carroll, & Nicholson, 2016). 

MCP-1, along with Mip-1α, was highly expressed in cells treated with ox-LDLs and YY-PF. 

Both of these signaling proteins attract macrophages and monocytes to the site of inflammation 

(Na et al., 2011; Wickstrom, Stavreus-Evers, Vercauteren, Olovsson, & Edelstam, 2017). Both 

these inflammatory molecules are also associated with nociception (Dauvergne et al., 2014; 

Kwiatkowski et al., 2016; Menetski et al., 2007). Immunoblotting indicated that ox-LDLs may 

increase the level of MCP-1 protein in treated cells similar to endo PF treatment, supporting our 

paradigm that the LDL components of the PF is responsible for the modulation of these 

chemokines and play a key role in nociception. Additionally, miR-374, which targets MCP-1, 
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was also significantly downregulated in cells treated with oxidatively-modified LDLs (L2), 

further validating our findings.  

Pathway analysis also identified potential relationships among the miRNAs that were 

modulated by PF or ox-LDL treatments and their predicted target genes (Figure 3.5). A higher 

frequency of down-regulation of the let-7 family of miRNAs was seen. This is not surprising 

when we consider several evidences in cancer research that let-7 is a potential tumor suppressor 

whose altered regulation leads to many types of cancer (C. H. Tsai et al., 2015; Yang, Zhang, 

Dong, Chang, & He, 2012). The let-7 family also targets opioid receptors and other nociceptors 

(He & Wang, 2012; He, Yang, Kirkmire, & Wang, 2010; Park et al., 2014). It was recently 

shown that the let-7 cluster of miRNAs plays a role in endometriosis. Circulating let-7 isoforms 

have been reported at varying levels in endometriosis patients (Seifer, Su, & Taylor, 2016). 

Studies have shown that the let-7 cluster is regulated by ox-LDLs (Ding, Wang, Khaidakov, Liu, 

& Mehta, 2012; B. Qin et al., 2012; Tang et al., 2015). Increased expression of the let-7f isoform 

in endometrial cells decreased cell migration (Cho et al., 2016).  While the previous study only 

investigated isoforms a-f, our finding that PF and ox-LDL treatments can also modulate let-7i-g 

suggest oxidative components of patient PF may also potentially play a role in endometrial cell 

invasion and migration.  

CONCLUSIONS 

 Endometriosis is a debilitating, chronic inflammatory condition that afflicts many young 

women around the world with chronic pain. Knowledge of pathways involved in the 

pathophysiology of endometriotic pain and regulators of such pathways will be a great asset in 

identifying new and appropriate targets for therapy. MiRNAs have established themselves as 

critical epigenetic regulators in the development and progression of several diseases, including 
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endometriosis. MiRNAs can regulate several nodal points in the complex etiology of 

endometriosis and its associated pain. Our data confirms earlier findings (Burney et al., 2009; 

Ohlsson Teague et al., 2009; Pan & Chegini, 2008; Pan et al., 2007; Teague et al., 2010) that 

miRNAs are down-regulated in endometriosis, but also additionally provide evidence that the 

presence or absence of pain discriminates the miRNA signature in these women. Our studies 

therefore suggest pain symptoms to be a unique discriminator of miRNA fingerprint in 

endometriotic women. 

 Our observation that Ox-LDL treated cells have very similar response on miRNA profile 

to the endo PF treatment suggests that many of these pain-targeting miRNAs are oxidation 

sensitive and can be targeted by drugs that reduce oxidation. MiRNA-based therapeutics provide 

a possible novel way to treat endometriotic symptoms. A potential example is the let-7 cluster, 

which is a known tumor suppressor and apparent target of oxidative stress in the peritoneal 

cavity of endometriosis patients. However, the ubiquitous nature of the let-7 family and their role 

in cellular homeostasis makes this option extremely complex. Over the past several years, 

researchers in cancer biology have made key advancements toward a let-7 therapy for various 

cancers, but the balancing act requires extensive preliminary studies in cell and animal models 

(Ciarmela et al., 2013; Young et al., 2013).  Based on our findings, another option would be to 

target the other miRNAs shown in Figure 3.5, for which validations studies need to be 

conducted. Lastly, our findings also support the potential use of agents that will diminish the 

oxidative stress in the peritoneal cavity (ox-LDLs), thus alleviating chronic pelvic pain.  
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Supplementary Table 3.1. Primer sequences for RT-qPCR analysis of nociceptive gene 
expression in PF and ox-LDL-treated cells. Primers were designed using NCBI GenBank and 
ordered from Invitrogen. 
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Supplementary Table 3.2. Significant miRNAs in endometrial cells treated with peritoneal 
fluid (PF) from women with and without endometriosis. YY indicates that the peritoneal fluid 
was from patients with endometriosis and pain (n=3). YN indicates that the patients had 
endometriosis but lacked pain (n=3). Significance (indicated in bold) was determined by a p-
value<0.05 compared to cells treated with PF from control patients (NN-PF, n=3). Fold change 
determined by SA Biosciences software. Red cells indicate upregulation while green cells 
indicate downregulation compared to control PF
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ABSTRACT 

Chronic pelvic pain associated with endometriosis has been attributed to hormonal and immune 

aberrations that alter the makeup of peritoneal fluid (PF) and impact surrounding tissues. It has 

been determined that the trimethylation of histone 3 lysine 27 (H3K27me3) plays a role in 

endometriosis. This histone modification has only one known methyltransferase, EZH2, the 

catalytic subunit of the epigenetic complex PRC2. We hypothesized that regulation of the PRC2 

complex ultimately results in increased endometriosis-associated pain, potentially mediated by 

epigenetic events. Samples from IRB-approved and consented patients with and without 

endometriosis or pain were used. mRNA expression of PRC2 components was measured in 

endometriosis and control tissues using RT-qPCR, along with Jumonji protein 2 and FOXP3, 

which are thought to interact with the complex. miRNA qPCR assays were used to measure the 

expression of miRNAs (e.g. miR-155-5p) that target the jumonji protein. Protein expression of 

these key regulators was determined using Western blots. Ishikawa cells treated with PF from 

patients with and without endometriosis and pain were used to stimulate endometrial cells. 

mRNA and protein expression of the afore-mentioned mediators were measured, as was the level 

of H3K27 trimethylation. The effects of miR-155 on jumonji protein 2 and PRC2 were 

determined by transfecting the cell model with a miR-155 mimic and antagonist. Cross-talk 

between Jumonji protein 2 and these epigenetic factors was explored using ChIP-qPCR. Our 
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study supported the notion that EZH2 is overexpressed in endometriosis and may contribute to 

the chronic pain associated with the disorder. Targeting of Jumonji protein 2 by miR-155 and 

hypermethylation of CpG islands in the promoter of FOXP3 likely contribute to this trend. 

Blocking miR-155 resulted in underexpression of EZH2 in cells treated with PF from women 

with endometriosis and pain (p=0.006) but failed to stunt expression when cells were treated 

with PF from endometriosis patients without pain. ChIP-qPCR potentially identified an alternate 

route to PRC2 and EZH2 stimulation in cells treated with PF from endometriosis patients with 

pain. These findings support the potential use of EZH2 inhibitors to treat endometriosis-

associated pain. They also present upstream mediators, Jumonji protein 2 and miR-155, that 

could be therapeutically targeted. 

INTRODUCTION 

Endometriosis and Epigenetics 

Endometriosis is defined by the presence of endometrial tissue in ectopic locations, 

typically in or around the peritoneal cavity (Burney & Giudice, 2012; Giudice, 2010). While the 

exact prevalence of endometriosis is likely underrepresented, most sources cite a minimum of 

10% of women in their reproductive years have this disease (Ciarmela et al., 2013; Platteeuw & 

D'Hooghe, 2014). Primarily described as a hormonal disorder, the pathogenesis of endometriosis 

has also been linked to immunological/inflammatory, genetic, and environmental factors. More 

recently, the role of epigenetics in the development and progression of the disorder has been 

investigated (Colon-Caraballo, Monteiro, & Flores, 2015; S. W. Guo, 2009; Nasu et al., 2011; 

Stephens, Whitehouse, & Polley, 2013). Epigenetic mechanisms are heritable changes to one’s 

phenotype that are not associated with a change in nucleotide sequence and include DNA 
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methylation, post-translational modifications to histone proteins, and often microRNAs (Bird, 

2007). 

Endometriosis and PRC2   

In addition to heterochromatin-like protein 1 (HP-1), polycomb (PcG) and trithorax 

(TrxG) complexes are at the heart of epigenetics. Responsible for maintaining gene repression 

and activity, respectively (Steffen & Ringrose, 2014), the latter two complexes function 

antagonistically to establish epigenetic regulation (Steffen & Ringrose, 2014). Polycomb 

repressive complex 1 (PRC1), polycomb repressive complex 2 (PRC2), and PhoRC all form the 

PcG complexes, with the former two typically being the subject of extensive epigenetic research. 

The Polycomb Repressive Complex 2 (PRC2) consists of four core proteins, RbAp46/48, 

Embryonic Ectoderm Development (EED), Suppressor of Zeste 12 (SUZ12), and Enhancer of 

Zeste Homolog 2 (EZH2), the catalytic subunit of the PRC2 complex. These components work 

together to regulate chromatin structure via tri-methylation of lysine 27 on histone 3 

(H3K27me3) (R. Cao et al., 2002; Kuzmichev, Nishioka, Erdjument-Bromage, Tempst, & 

Reinberg, 2002), which is also known to interact with PRC1. EED binds the histone site while 

EZH2 methylates it, with the help of SUZ12 (Geisler & Paro, 2015). This modification leads to 

the formation of closed chromatin structure (heterochromatin) and thus marks transcriptional 

repression, as further demonstrated by the presence of other co-factors (Fuks, 2005; Kondo, 

2009; Vire et al., 2006). Little is known about the mechanistic role of this complex in the 

pathophysiology of endometriosis. One recent study in endometriosis showed heightened 

expression of EZH2 and trimethylation of H3K27 in secretory endometrium and endometriotic 

lesions (Colon-Caraballo et al., 2015). Additionally, an endometriosis cell culture study by Arosh 

and colleagues proved that inhibition of PGE2 receptors EP3 and EP4 are coincident with 
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decreased EZH2 expression (Arosh et al., 2015), supporting a role for PRC2 in endometriosis-

associated pain. 

Jumonji Proteins 

It has been shown that the PRC2 complex (specifically EZH2) is, at least partly, regulated 

by Jumonji and AT-Rich Interaction Domain Containing 2 (G. Li et al., 2010), a member of the 

Jumonji family of histone demethylases and common target of differentially expressed miRNAs 

(miR-30b, miR-30c, miR-10a, miR-29a, miR-26a, miR-148a, miR-181a, miR-30e) in 

endometriotic lesions compared to control tissues (Wright 2017, accepted for publication in 

Redox Biology). The jumonji family is the largest family of histone demethylases, and all but 

Jumonji protein 2 contain the catalytic JmjC domain responsible for histone demethylation 

(Klose, Kallin, & Zhang, 2006; Kooistra & Helin, 2012). Due to its cross-talk with EZH2 and 

PRC2 activity in embryonic stem cells, Jumonji protein 2  is thought to be crucial in 

development and potentially in the progression of cancer (Landeira & Fisher, 2011; G. Li et al., 

2010; Pasini et al., 2010). As such, targeting Jumonji protein 2 via modulators such as 

microRNAs could be one method of stunting cell proliferation. In a study of acute lymphoid 

leukemia, Palma and colleagues determined that miR-155-5p induced cell death via a network of 

mechanisms, including regulation of cyclinD1 by Jumonji protein 2  (Palma et al., 2014). Others 

believe that miR-155-5p could have evolved to regulate PRC2 by tweaking Jumonji protein 2 

expression (Escobar et al., 2014). Interestingly, miR-155-5p is an established promoter of 

inflammation via regulation of macrophages and cytokines (Escobar et al., 2014; Jablonski, 

Gaudet, Amici, Popovich, & Guerau-de-Arellano, 2016; Yao, Li, Wu, Zhang, & Wang, 2015). 
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Endometriosis and FoxP3 

miR-155 is highly expressed in regulatory T-cells (Tregs), where it is targeted by the 

transcription factor FOXP3, a known tumor suppressor. Though limited in evidence, FOXP3 

plays a role in the inflammatory aspect of endometriosis. The prevalence of FOXP3+ Tregs in an 

endometriotic environment during secretory phase prevented leukocyte recruitment to the sites of 

endometriosis (Berbic & Fraser, 2011). Additionally, PF from women with endometriosis has a 

higher concentration of FOXP3-expressing TCD4+CD25highcells than the PF of control patients 

(Olkowska-Truchanowicz et al., 2013; Podgaec, Rizzo, Fernandes, Baracat, & Abrao, 2012). 

Over the past several years, there has been a lack of consistent findings regarding FOXP3 

expression in endometriotic lesions and eutopic tissues of endometriosis patients (Basta et al., 

2010; Berbic et al., 2010). Most recently, Podgaec and colleagues found high FOXP3 expression 

in deep rectosigmoid lesions but lower expression in the eutopic endometrium of endometriosis 

patients with chronic pelvic pain (Podgaec et al., 2014). These studies provide further evidence 

that the immunological aspects of endometriosis are at least partly responsible for endometriosis-

associated pain.  

 It is important to note that FOXP3 also has an indirect relationship with the EZH2 

component of PRC2. In breast cancer models, overexpression of FOXP3 protein not only 

lessened the proliferative effects of EZH2, but also enhanced degradation of EZH2 protein (Z. 

Shen et al., 2013). Conversely, there is evidence that trimethylation of H3K27 by EZH2 is 

capable of silencing FOXP3 promoter regions, therefore leading to aberrant Treg cell 

differentiation and function (Xiong et al., 2012). These studies suggest a complex interplay 

between epigenetic mediators, PRC2 complex, miR-155-5p and the inflammatory mediator 

FOXP3. We hypothesized that the imbalance in this cross-talk triggers inflammatory responses 
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and nociception in endometriosis. The current study determined the cross-talk between these 

mediators in patient tissues and an endometriosis cell model. 

MATERIALS AND METHODS 

Human Subject Participants 

Women ages 21 to 60 years, undergoing tubal ligation or having non-endometriosis 

disorders (controls) or patients with endometriosis (“endo”, laparoscopically diagnosed followed 

by pathological confirmation and/or patients with symptoms) were recruited from Obstetrics-

Gynecology clinic at Cabell Huntington Hospital, Joan C Edwards School of Medicine, Marshall 

University, in Huntington, WV. In this study, endo patients were diagnosed with stage I/II 

peritoneal endometriosis. This HIPAA compliant study was approved by the Institutional Review 

Board of the Marshall University School of Medicine and was carried out per the principles of 

the Declaration of Helsinki. All patients were consented prior to the study. All women completed 

a gynecologic/infertility history form, a pre-operative quality of life questionnaire and 

assessment of pain using a visual analog scale for assessment of endometriosis associated pain 

(dysmenorrhea, non-menstrual pelvic pain, dyspareunia, and dyschesia) (adapted from the 

validated International Pelvic Pain Society’s Pelvic Assessment Form). Date of their last 

menstrual period was used to assess their cycle time. The inclusion criteria included women ages 

21-60 years old, with normal menstrual cycles and otherwise in normal health (except for pain 

and endometriosis) who have not been on any hormonal medication for at least one month before 

sample collection.  Exclusion criteria included subjects with current medical illnesses such as 

diabetes, cardiovascular disease, hyperlipedemia, hypertension, systemic lupus erythematosis or 

rheumatologic disease, positive HIV/AIDS, active infection.  Subjects were asked to stop 
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multivitamins that contain high levels of antioxidants and anti-inflammatory medications one 

month prior to sample collection.  

RNA/Protein Isolation in Peritoneal Fluid-treated Cells 

Peritoneal fluid (PF) (devoid of blood contamination) was collected on ice from all 

women during laparoscopic surgery.  Peritoneal fluid was spun at 2000xg to remove any cellular 

debris. The supernatant was used immediately for studies or stored in a -800C freezer for future 

use. To establish a cell model of the peritoneal environment, Ishikawa cells a human (39-year-

old woman) established endometrial cell line (Sigma-Aldrich, St. Louis, MO), were cultured in 

T75 flasks in complete media (DMEM/F12, 10% FBS, 1% Pen/Strep, 1% L-glutamine). These 

cells were used because they express characteristics similar to those of mature endometrial 

epithelial cells (Bulun et al., 2006; Cho et al., 2016; Nishida et al., 1985). Approximately 70% 

confluent cells were treated with 1% PF from patients for 48 hours in a DMEM/F12 media 

containing 1% charcoal-stripped FBS. Patient peritoneal fluid (PF) groups were +endo/+pain 

(YY-PF), +endo/-pain (YN-PF), and –endo/-pain (NN-PF, “control fluid”). The concentrations 

chosen were based on our previous published studies (K. Ray et al., 2015). At the end of the 48-

hour treatment, cells were collected using Qiazol Lysis reagent (Qiagen, Gaithersburg, MD) and 

RNA was isolated using the Qiagen miRNeasy Mini Kit. The quantity and quality of RNA were 

measured in the NanoDrop 2000 spectrophotometer. Cells were also collected in RIPA buffer 

with protease inhibitors (Thermo Scientific, USA) and protein concentrations were measured 

using a modified Lowry protocol (Lowry et al., 1951) 

Endometrial Tissue Collection and RNA/Protein Isolation 

Endometrial (eutopic) tissues from control patients (EuNN), eutopic tissues from 

endometriosis (ovarian or peritoneal endometriosis, “endo”) patients (EuYY), and ectopic 
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endometriotic tissues (EcYY) from endo patients were removed during laparoscopy/laparotomy 

by a qualified physician. Biopsy fragments were immediately placed in RNAlater solution 

(Qiagen) and subsequently stored in a freezer at -80°C. RNA extraction from 100 mg of tissue 

(eutopic and ectopic) was carried out using Qiazol Lysis Reagent (Qiagen). Tissues were 

homogenized using zirconium oxide beads in a Bullet Blender® homogenizer (Next Advance, 

USA) and RNA was isolated using the Qiagen miRNeasy Mini Kit following the manufacturer’s 

recommendations. The quantity and quality of RNA were measured in the NanoDrop 2000 

spectrophotometer (Thermo Scientific, USA). Similarly, 50 mg of tissue was homogenized in 

RIPA buffer prior to protein estimation by a modified Lowry method. 

mRNA Expression in Tissues and PF-treated Ishikawa Cells 

RNA (which includes miRNA) isolated from the tissues and treated cells were used. 

cDNA synthesis from 1 µg of each sample was performed using iScript RT II Kit (Qiagen). 

mRNA expression was analyzed in the cDNA samples using SYBR Green (Biorad, Hercules, 

CA) and the primers listed in Supplementary Table 4.1. cDNA synthesis from 2 µg of each 

sample was performed using miScript RT Kit (Qiagen). To determine the expression of miR-29a, 

miR-148a, and miR-155 in tissues and PF-treated cells, the appropriate Qiagen Primer Assay Kit 

was used, following the manufacturer’s protocol for qPCR. A primer assay for RNU6 was used 

for a qPCR housekeeping gene. 

Protein Expression in PF-treated Cells and Patient Tissues 

Total protein was measured using a modified Lowry method. Protein (35µg) was 

separated on a 4-20% Tris-HCl gradient gel (Biorad) and transferred onto nitrocellulose 

membranes. After washing with Tris-buffered saline with Tween 20 (TBST), the membranes 

were blocked in 5% bovine serum albumin or 5% milk in TBST for 1 hour, then incubated at 



www.manaraa.com

94 
 

4°C overnight with anti-rabbit antibody against Jumonji protein 2, FOXP3, EZH2, and 

H3K27me3 (1:1000, Cell Signaling, Danvers, MA) and anti-mouse against β-actin (1:4000, 

Sigma-Aldrich). Anti-rabbit antibody against H4 was diluted 1:20000. The membranes were 

washed and incubated with HRP-linked anti-rabbit or anti-mouse secondary antibody (1:6000, 

Sigma-Aldrich, St. Louis, MO) for one hour at room temperature. After washing, membranes 

were developed in HRP Substrate (Millipore, Temecula, CA) and imaged using the ChemiDoc 

system (Biorad). Densitometric levels of protein bands were quantified and expressed as their 

relative ratio to β-actin.  

Cell Transfection with miR-155 Mimic/Antagonist 

Cells were transfected using SiPORT™ NeoFX ™ transfection agent (Ambion, Austin, 

TX) as recommended by the manufacturer. In short, the SiPORT™ NeoFX ™ was diluted in 

Opti-MEM® Reduced Serum Media (Invitrogen, Carlsbad, CA) and incubated for 10 min at 

room temperature. miR-155 mimic (Pre-miR™), inhibitor (Anti-miR™), positive control (anti-

let-7c), and negative control (Negative control #1) were diluted in Ishikawa media to a final 

concentration of 30 nM and then combined with the transfection agent and incubated for 10 min 

at room temperature. Transfection mixtures were added to 6-well plates and overlaid with cell 

suspensions. Cells were then incubated for 24 hours prior to treatment with peritoneal fluid from 

control and endometriosis patients, as previously described. Transfections were tested for 

effectiveness by collecting cells in Qiazol and using a miR-155 primer assay to assess miRNA 

expression. This transfection process was completed for collection of cells for protein and RNA 

and a miR-155-5p qPCR assay was used to verify transfection efficiency. RNA was isolated 

using the miRNeasy Mini Kit following the manufacturer’s recommendations. Western blots and 
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RT-qPCR were used (as previously described) to determine the expression of key downstream 

targets. 

Chromatin Immunoprecipitation (ChIP) 

Approximately 70% confluent Ishikawa cells were treated with 1% PF from patients for 

48 hours in a DMEM/F12 media containing 1% charcoal-stripped FBS. Proteins were cross-

linked to proteins by adding formaldehyde (0.75% by volume) and allowing for a 10-minute 

incubation at room temperature. Glycine (0.5M) was added and incubated for an additional 10 

minutes. Cells were twice rinsed with PBS, collected in 1 ml PBS, pelleted by centrifugation, 

and lysed in 300 μL of lysis buffer (1% SDS; 5 mM EDTA; 50 mM Tris-HCl, pH 8) plus 

protease inhibitors (Thermo Scientific). Cell extracts were sonicated on ice 3 x 10 seconds at 

15% amplitude using the Sonic Dismembrator Model 500 (Fisher Schientific). Shearing was 

verified by running chromatin samples on an agarose gel and fragments averaged about 800 kD 

in size. After isolating 50µl of each sample for INPUT, 100µl per antibody were diluted 1:10 in 

dilution buffer (16.7 mM Tris-HCl, pH 8; 167 mM NaCl; 1.2 mM EDTA; 0.01% SDS; 1.1% 

Triton X-100) and rotated overnight at 4°C with 2 μg of non-specific IgG (Santa Cruz) or ChIP-

grade anti-Jumonji protein antibody (Cell Signaling, #13594). Antibody-chromatin complexes 

were collected using 5 μL of magnetic Dynabeads protein A beads (Invitrogen) with rotation at 

4°C for 90 min. Using magnetic separation (Life Technologies), beads were washed sequentially 

with low and high salt wash buffer, 0.25M LiCl wash buffer, and TE buffer. All samples 

(including INPUT) were incubated at 65°C for four hours with elution buffer containing 

proteinase K. DNA concentration was determined by NanoDrop 2000 spectrophotometer and 

analyzed using the Human Polycomb & Trithorax Complexes EpiTect ChIP qPCR Array 

(Qiagen). This array consisted of primers for genes belonging to the polycomb and trithorax 
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complexes (core, alternate, and additional compnents), as well as polycomb co-factors such as 

PHD finger protein 19 (PHF19) and heterochromatin (CBX) proteins. Percent enrichment and 

further statistical analysis was calculated using an SA Biosciences spreadsheet. 

Statistical Analysis 

Prism software (GraphPad, Inc., La Jolla, CA) was used for analysis of non-array qPCR 

data in human tissue and cell culture studies. All values were expressed as mean ± standard error 

of the mean (SEM). A one-way ANOVA followed by Tukey’s post-hoc test was used to detect 

differences in relative gene expression among treatment groups. Student’s t-test was used to 

compare the means of mRNA and protein expression in various tissues and cell treatments. P 

values less than 0.05 were considered significant. 

RESULTS 

PRC2 and FOXP3 Expression in Patient Tissues 

Protein levels of EZH2, H3K27me3, and FOXP3 in EuNN, EuYY, and EcYY tissues 

(n=6) are shown in the Western blot in Figure 4.1A. No significant difference was seen between 

the mean density of endo tissue and control tissue bands (Figure 4.1B). qPCR was used to 

determine the expression of PRC2 components SUZ12, EED, and EZH2, as well as FOXP3 

(Figure 4.1C). When compared to the control tissues, expression of all four genes was lower in 

eutopic tissue from endometriosis patients (EuYY). In contrast, ectopic tissues expressed higher 

levels of EED and EZH2 than control tissues, with a p-value of 0.06.  
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Figure 4.1. Protein and gene expression of key epigenetic mediators in endo and control 
tissues. A) Western blots of EZH2, H3K27me3, and FOXP3 in control (EuNN), eutopic endo 
(EuYY), and ectopic endo (EcYY) tissues (n=6). Each blot represents identical sample loading, 
antibody dilutions, and overall protocol. B) Densitometry analysis of Western blots, showing 
protein expression relative to β-actin; p>0.05 C) Relative mRNA expression of polycomb 
repressor complex 2 (PRC2) elements in EuNN (n=3), EuYY (n=7) and EcYY tissues (n=4). In 
general, these elements were underexpressed in eutopic endo tissues compared to control tissues. 
There was general overexpression in ectopic endo tissues, especially in EZH2 (p=0.06).  
 
Expression of Jumonji Protein 2 and Targeting MiRNAs in Patient Tissues 

miRNA qPCR assays were used to measure expression of miR-148a, miR-29a, and miR-

155, which, among others, target Jumonji protein 2 (Targetscan, IPA). All three miRNAs were 

overexpressed in endo (eutopic and ectopic) tissues compared to control tissues (Figure 4.2). 

miR-29a and miR-155 had more pronounced expression in endometriotic lesions than other 

tissue groups, while miR-148a expression was greatest in EuYY tissues. Compared to control 
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tissues, Jumonji protein 2 was significantly downregulated in eutopic endometrium from 

endometriosis patients (p=0.004).  

 
Figure 4.2. Expression of Jumonji protein 2 and miRNAs that target Jumonji protein 2 in 
patient tissue samples. Compared to control tissues (n=3), expression of miR-148a, miR-29a, 
and miR-155 were all higher in endo tissues (both eutopic and ectopic, n=3). Jumonji protein 2 
was significantly underexpressed in eutopic tissues from endo patients when compared to control 
tissues (p=0.004).  
 
Epigenetic Expression in an Endo Cell Model 

Protein and mRNA expression of epigenetic regulators were measured in endometrial 

cells treated with peritoneal fluid from women with and without endometriosis and pain (Figure 

4.3). Cells treated with endo PF (YN-PF and YY-PF) had increased Jumonji protein 2, EZH2, 

and FOXP3 mRNA expression compared to media control. NN-PF had no such induction. The 

corresponding protein expression was similar among the PF treatments.  Despite the significant 

decrease in EZH2 upon YN-PF treatment compared to media control (0.66-fold change, 

p=0.032), there was no such discernable difference when it was compared to NN-PF treatment. 

FOXP3 protein expression was significantly lower (0.763-fold) in YY-PF treated cells when 

compared to NN-PF treated cells. The double band seen in Figure 4.3C could be explained by 

post-translational modifications to its regulatory elements. To test for this, calf intestinal 

phosphatase (CIP) could be added to the samples, resulting in fused bands or elimination of the 

band representing phosphorylation. Trimethylation of H3K27 was also significantly less 
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prevalent in YY-PF treated cells (0.679-fold). Based on the molecular weight of the modification 

(about 17 kDa), the top bands were measured for densitometry. 

 
Figure 4.3. mRNA and protein expression of epigenetic mediators in an endo cell model. A) 
mRNA expression of Jumonji protein 2, EZH2, and FOXP3 in cells treated with NN-PF (n=6), 
YY-PF (n=5), and YN-PF (n=3), relative to expression in a media control (p>0.05). B) Western 
blots for Jumonji protein 2, FOXP3, EZH2, and H3K27me3 in PF-treated cells. Arrows indicate 
the appropriate row of bands. C) Densitometric analysis of Western blots. Relative protein 
expression of Jumonji protein 2, EZH2, and FOXP3 in PF-treated cells was calculated in relation 
to a media control. FOXP3 expression was 0.763-fold lower in YY-PF than in control media; 
H3K27me3 levels were 0.679-fold lower in YY-PF than in media control; p<0.05 
 
miR-155 Regulates PRC2 Complex  

The expression of Jumonji protein and the PRC2 complex was determined in endometrial 

cells transfected with a miR-155 mimic or antagonist (Figure 4.4). The miR-155 mimic had 

minimal effect on Jumonji protein expression in PF-treated cells (p>0.05), but seemed to 

increase FOXP3 expression in cells treated with control PF. The miR-155 inhibitor significantly 

decreased Jumonji protein expression in cells treated with YY-PF (p=0.0172).  

Overexpression of miR-155 resulted in significantly higher Jumonji protein expression in 

endo PF-treated cells compared to control PF-treated cells (YY-PF p = 0.005, YN-PF p = 0.002) 
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(Figure 4.5A). FOXP3 expression was significantly lower in all PF-treated cells than media 

control cells transfected with miR-155 mimic (NN-PF p = 0.0112, YY-PF p = 0.0002, YN-PF p 

= 0.0005). Inhibition of miR-155 resulted in significantly higher Jumonji protein expression in 

YN-PF treated cells compared to NN-PF treated cells (p<0.001) (Figure 4.5B). EZH2 expression 

was lower than control media in NN-PF and YY-PF treated cells but higher in YN-PF treated 

cells (NN-PF p = 0.053, YY-PF p = 0.006, YN-PF p = 0.026). Compared to the media control 

transfected with miR-155 antagonist, the expression of FOXP3 was significantly higher in all 

PF-treated cells (NN-PF p<0.001, YY-PF, p = 0.006, YN-PF p<0.001). Trimethylation of 

H3K27 was less prevalent in endo PF-treated cells compared to NN-PF treated cells (YY-PF p = 

0.025, YN-PF p<0.001).  

 
Figure 4.4. Key mRNA levels in cells transfected with a miR-155 mimic and antagonist. 
Transfection with a miR-155 mimic had little effect on Jumonji protein 2 expression in PF-
treated cells (p>0.05), but seemed to increase FOXP3 expression in cells treated with control PF. 
Compared to control media, the miR-155 antagonist significantly decreased Jumonji protein 2 
expression in cells treated with YY-PF (*p=0.017) 
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Figure 4.5. Expression of key proteins in cells transfected with miR-155 mimic and 
antagonist. A) Transfection with a miR-155 mimic resulted in significantly higher Jumonji 
protein 2 expression in endo PF-treated cells (n=3) compared to control PF-treated cells 
(n=3)(YY-PF p = 0.005, YN-PF p = 0.002) and lower FOXP3 expression in all PF-treated cells 
compared to media control cells transfected with miR-155 mimic (NN-PF p = 0.0112, YY-PF p 
= 0.0002, YN-PF p = 0.0005. B) Transfection with a miR-155 inhibitor resulted in significantly 
higher Jumonji protein 2 expression in YN-PF treated cells compared to NN-PF treated cells 
(p<0.001). EZH2 expression was lower than control media in NN-PF and YY-PF treated cells 
but higher in YN-PF treated cells (NN-PF p = 0.053, YY-PF p = 0.006, YN-PF p = 0.026). 
Compared to the media control transfected with miR-155 antagonist, the expression of FOXP3 
was significantly higher in all PF-treated cells (NN-PF p<0.001, YY-PF, p = 0.006, YN-PF 
p<0.001). H3K27me3 was less prevalent in endo PF-treated cells compared to NN-PF treated 
cells (YY-PF p = 0.025, YN-PF p<0.001). 
*Significant difference (p<0.05) in mean compared to control media, $Significant difference 
(p<0.05) in mean compared to NN-PF, #Significant difference (p<0.05) in mean compared to 
control media with mimic/inhibitor  
 
Epigenetic Regulation of FOXP3  

Global DNA methylation array to assess promoter methylation patterns showed changes 

in genes involved in Inflammation and autoimmunity. The heat map in Figure 4.6 presents a 

range (from 0 to 100) of “M”, the fraction of input genomic DNA containing 2+ methylated CpG 

sites in the targeted region of a gene. Based on the fold changes (p>0.05 in all instances), the 
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following five genes were identified as being impacted by DNA methylation: Forkhead box 

protein J1 (FOXJ1), MHC class I polypeptide-related sequence B (MICB), forkhead box P3 

(FOXP3), Cluster of Differentiation 8a (CD8A), and Lymphotoxin Beta (LTB). All genes, except 

CD8A, had an increased methylation pattern in cells treated with endo PF (YN and YY) 

compared to NN-PF and the media control. FOXP3 M values were 56.67% in YY-PF treated 

cells, 25.54% in NN-PF treated cells, 33.73% in YN-PF treated cells, and 0.23% in control 

media. Bisulfite sequencing will be used in the future to better understand the methylation 

patterns of sample DNA. 

 
 
Figure 4.6. Methylation patterns of inflammatory genes in PF-treated cells. Heat map 
showing DNA methylation trends in PF-treated cells on promoters of genes associated with 
autoimmunity and inflammation. Treatment groups with green shades have lower methylation 
fractions than those with red shades. Of interest is FOXP3, which has been deemed a tumor 
suppressor gene. YY-PF: M = 56.67%; YN-PF: M = 33.73%; NN-PF: M = 25.54%; Control 
media: M = 0.23%. 
 
Jumonji Protein Regulates PRC2 Target Genes 

To determine the epigenomic targets of Jumonji protein 2 we performed ChIP using 

Jumonji Protein 2 antibody followed by promoter array of genes associated with polycomb and 

trithorax complexes in cells treated with PF. Generally, there was less enrichment of the genes 

(BAP1, EED, EZH1, EZH2, PCGF1, PCGF2, PCGF5, PHF1, PHF19) when cells were treated 

with endo PF. Figure 4.7 provides a graphical representation of genes with notable differences in 

YY-PF and YN-PF, when compared to NN-PF. The enrichment of EZH2 by Jumonji protein 2 
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was lower in endo PF-treated cells compared to NN-PF treated cells. EZH1, a polycomb enzyme 

which is responsible for mono-, di-, or tri-methylation of H3K27, showed greater enrichment by 

Jumonji protein 2 in YY-PF treated cells than NN-PF treated cells. PCGF represents the 

polycomb group ring finger genes, which had similar fold change values in both endo treatment 

groups. For all data, p>0.05, likely due in part to small sample size. 

 
 Figure 4.7. Epigenetic crosstalk in PF-treated cells. Chromatin Immunoprecipitation to 
analyze interactions between Jumonji protein 2 and genes associated with the polycomb and 
trithorax complexes, normalized to IgG. Fold change values represent the ratio of 
enrichment/binding of Jumonji protein 2 to various genes in endo PF-treated cells (n=3) to 
enrichment in control PF-treated cells (n=3). Generally, increased enrichment was seen on genes 
in the presence of YY-PF compared to YN-PF. However, fold change indicates that both endo 
conditions resulted in lower enrichment compared to control PF. p>0.05. BAP1: BRCA1 
associated protein-1; EED: Embryonic ectoderm development; EZH1: Enhancer of zeste 
homolog 1; EZH2: Enhancer of zeste homolog 2; PCGF1: Polycomb group ring finger 1; 
PCGF2: Polycomb group ring finger 2; PCGF5: Polycomb group ring finger 5; PHF1: PHD 
finger protein 1; PHF19: PHD finger protein 19 
 

DISCUSSION 

Our laboratory has been working to identify underlying mechanisms of pain experienced 

by endometriosis patients (K. Ray et al., 2015; K. L. Ray et al., 2014; Rong et al., 2002; 

Santanam et al., 2013). This study stemmed from investigations into the miRNA profile of 

endometriosis tissues and PF. Nineteen percent of differentially expressed miRNAs in endo 
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tissues targeted Jumonji protein 2. Despite the global downregulation seen in the micronome of 

endometriotic tissues (Wright, 2017), miRNAs that targeted Jumonji protein 2 were highly 

expressed in the eutopic tissues of endometriosis patients with pain. The overexpression of miR-

148a, miR-29a (Wright, 2017), and miR-155 in endo tissues (Figure 4.2) seem to support this 

theory. Although little to no difference in PRC2 protein expression was seen among tissues, there 

was a noticeable trend in overexpression of corresponding genes in ectopic tissues from 

endometriosis patients, particularly in EZH2 (p=0.06). This correlates with the findings of 

Colon-Caraballo and colleagues (Colon-Caraballo 2015) and supports the characterization of 

EZH2 as a contributor to transcriptional repression and progression of the disease. FOXP3 was 

present in lesser amounts in endo tissues compared to control tissues. Based on the role of 

FOXP3 as a tumor suppressor and the tendency for inflammation to repress its expression (Gao 

et al., 2015), these results are not surprising.  

Although miR-155 was not originally identified based on the micronome array (p>0.05), 

its relationship with Jumonji protein 2 has recently drawn the attention of researchers in the field 

of inflammatory disease (Escobar et al., 2014; Palma et al., 2014). miR-155 seems to play a key 

intermediary target that regulates the crosstalk between Jumonji protein 2 and PRC2. Hence 

miR-155 is a potential therapeutic target. In this study, we explored the role of miR-155 in 

endometriosis by transfecting PF treated cells with a miR-155 mimic or antagonist. Despite the 

knowledge that FOXP3 targets miR-155 (Kohlhaas et al., 2009), overexpression of miR-155 in 

PF-treated cells resulted in little to no difference in FOXP3 expression among the three treatment 

groups. However, blocking miR-155 resulted in significant overexpression of FOXP3 in YN-PF 

treated cells. The effect of altering miR-155 on Jumonji protein 2 was also interesting. Compared 

to control PF-treated cells, cells treated with endo PF overexpressed Jumonji protein 2 when 
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transfected with the miR-155 mimic. When transfected with the miR-155 inhibitor, only cells 

treated with YN-PF overexpressed Jumonji protein 2 compared to control PF treatments. These 

results were unexpected and suggest that the miRNA regulation of FOXP3 and Jumonji protein 2 

is not sufficient to alter expression. Other transcription factors and/or epigenetic mediators could 

play a role in aberrant expression in endometriosis. Knocking down miR-155 provided the most 

insight into the mechanism. While the presence of pain seemed to contribute to the downstream 

repression of EZH2, the repression of the histone modification was seen in cells treated with both 

endo PFs in comparison to NN-PF treated cells, suggesting that this interaction may be related to 

the presence of endometriosis independent of the pain symptom. 

Methylation of the FOXP3 promoter could be partly responsible based on the trend of 

increased methylation in cells treated with PF from endo patients, particularly those reporting 

pain. FOXP3 expression in endo PF-treated cells trended lower than that of cells treated with 

control PF and protein expression varied very little among the treatment groups. EZH2 

expression was significantly lower in cells treated with YN-PF than in the media control but no 

difference was seen among PF treatment groups. The benefit of studying these epigenetic 

mediators in tissues and treated cells gave us the ability to compare short-term and long-term 

effects of peritoneal fluid on endometrial cells. This difference is likely to contribute to 

explaining the disparities in results.  

ChIP-qPCR was used to better understand the role that Jumonji protein 2 plays in 

endometriosis-associated pain. By observing how it binds to regulatory elements of various 

genes, we gained a sense of how the mechanisms described above differ between PF from 

patients with pain to those without. The preliminary data presented in Figure 4.7 suggest that the 

Jumonji protein 2 interaction with EZH2 may not be as strong in a “painful” situation as it is 
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with EZH1, which can also methylate H3K27 to contribute to transcriptional repression. 

Although it is typically associated with active domains, EZH1 can actually achieve repressive 

results similar to EZH2 via additional histone modifications (Mochizuki-Kashio et al., 2015; X. 

Shen et al., 2008; Son, Shen, Margueron, & Reinberg, 2013). It is interesting to note that, in 

general, binding of Jumonji protein 2 to these genes was less likely to occur in cells exposed to 

endo PF compared to control PF. One exception was PHF19, where enrichment appeared to be 

greater in cells treated with YY-PF compared to both NN-PF and YN-PF (p>0.05). PHF19 has 

the ability to bind H3K36me3, which allows it to act as a recruiter for the PCR2 complex (Brien 

et al., 2012; S. Qin et al., 2013), suggesting that another mechanism may be at play in 

transcriptional repression. PHF19 has also been deemed a role player in the switch from 

proliferative to invasive states in melanoma cells (Ghislin, Deshayes, Middendorp, Boggetto, & 

Alcaide-Loridan, 2012). Additional ChIP experiments are needed to confirm the enhanced 

binding of Jumonji protein 2 to this gene and ChIP-re-ChIP studies would investigate the activity 

of the Jumonji protein by encompassing trimethylation of H3K27. 

The findings presented here, as summarized in Figure 4.8, provide potential mechanisms 

for inflammatory pain and proliferation in endometriosis patients. This opens the door for novel 

therapies such as EZH2 inhibitors and miRNA mimics/antagonists. Future studies will test such 

therapies (e.g. GSK126 and sulforaphane, established as anti-inflammatory agents) in cell and 

animal models of endometriosis. Although histone demethylases are thought to be ineffective 

against Jumonji protein 2 due to its lack of true demethylase activity, additional investigations 

into the role of Jumonji protein 2 in endometriosis could uncover alternative options to 

therapeutically regulate it. 
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Figure 4.8. Proposed schematic of the epigenetic mechanism contributing to the pain and 
progression of endometriosis. Arrows indicate activation or general targeting while “T” bars 
indicate inhibition. 
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GENE NAME PRIMER 
TYPE SEQUENCE 

EED 
sense 5′- CATTGGGCAATCAAGTTGGCA -3′ 

antisense 5′- ACAAGTGTGGAGAAAAAGCCTG -3′ 

SUZ12 
sense 5′- GTTACCGGTGAAGAAGCCGA -3 

antisense 5′- TTGGCTTCTCAAAGGCCTGG -3′ 

EZH2 
sense 5′- AAGGAGTTTGCTGCTGCTCT -3′ 

antisense 5′- ATTAATGGTGGGGGTGCTGG -3′ 

Jumonji protein 2 
sense 5′- CTGCAGCACAAACGTGACTT -3′ 

antisense 5′- CATCAGCGAAACGTGAAGGTC -3′ 

FOXP3 
sense 5′- ACTGGGGTCTTCTCCCTCAA -3′ 

antisense 5′- GGGATTTGGGAAGGTGCAGA -3′ 

 
Supplementary Table 4.1. Primer sequences for RT-qPCR analysis of epigenetic gene 
expression in patient tissues and PF-treated cells. Primers were designed using NCBI 
GenBank and ordered from Invitrogen.  
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CHAPTER 5 

SUMMARY AND CONCLUSION 

The goal of this thesis was to expose the underlying mechanisms of chronic pelvic pain 

suffered by many endometriosis patients. Our laboratory has a strong history of investigating the 

role of oxidative stress and oxidatively-modified lipoproteins in endometriosis-associated 

inflammation (Murphy, Santanam, Morales, et al., 1998; Murphy, Santanam, & Parthasarathy, 

1998; Parthasarathy et al., 2010; Rong et al., 2002; Santanam et al., 2013; Santanam, Murphy, et 

al., 2002; Shanti et al., 1999). We know that ox-LDLs present in the peritoneal fluid and tissues 

of endometriosis are partially responsible for the high inflammatory state and progression of the 

disease. The work presented here further explored how these ox-LDLs accomplish this as well as 

the role of nociceptive pain associated with the disorder.  

As was mentioned in the introduction of this thesis, there are multiple types of pain 

associated with endometriosis, so addressing just one therapeutically is unlikely to provide 

sufficient relief. One alternative is to consider the interplay of inflammatory and nociceptive 

pain. There is evidence that nerve fibers which innervate ectopic and eutopic tissues of 

endometriosis patients terminate in nociceptors that are sensitive to inflammatory markers 

(Berbic & Fraser, 2011). We hypothesized that the ox-LDLs present in the peritoneal fluid of 

patients are responsible for the overexpression of several such inflammatory and nociceptive 

markers (e.g. IL6, OPRM1, and CX3CR1) compared to the PF from control patients. These 

prostaglandin-like molecules exacerbated the genetic pain condition as well as the nociceptive 

response in a mouse model. While treatment with NSAIDs and antioxidants addressed these 

conditions and improved responses in the animal model, understanding the mechanism of action 

of ox-LDLs is crucial. 
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There are numerous parallels between the progression of endometriosis and cancer, so it 

comes as no surprise that there are similar mechanisms behind them. One example is the global 

downregulation of human miRNAs in patients of both diseases. In order to take advantage of this 

trend, it is necessary to study any downstream targets of these small RNAs. We found that, of 

1000+ miRNAs in the human micronome, relatively few were aberrantly expressed only in cells 

treated with PF from endometriosis patients and those treated with ox-LDLs (Figure 3.2). Even 

fewer had validated target genes associated with pain (Figure 3.5). The let-7 family of miRNAs, 

particularly, let-7i and let-7g, were prime examples of potential ox-LDL regulators in both 

tissues and endo cell models. Figure 5.1 summarizes how let-7 and other miRNAs accomplish 

inflammatory and/or nociceptive responses in the peritoneal cavity of endometriosis patients.  

The final study described here led us to believe that endometriosis-associated pain, in 

addition to being associated with the afore-mentioned mechanisms, is epigenetic in nature. 

FOXP3 is a known tumor suppressor and has become a novel subject of investigation in cancer 

research. Its role as a transcription factor in immune response means that any alterations to its 

expression could have consequential effects. In a cell model with PF from endometriosis 

patients, FOXP3’s promoter was hypermethylated compared to cells treated with PF from 

control patients, particularly when the PF was from patients with pain. This methylation and 

subsequent downregulation of FOXP3 could contribute to the overexpression of 

proinflammatory miR-155. Assuming that the proposed relationship between miR-155 and PRC2 

is correct, it is plausible that the miRNA works to increase EZH2 expression and even activity 

via Jumonji protein 2.  

 The studies completed as part of this dissertation have successfully unveiled some of the 

mechanisms behind endometriosis-associated pain. Studying the role of inflammation and 
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nociception in both tissues and PF-treated cells allowed us to observe short- and long- term 

effects of the complex milieu that is peritoneal fluid. Key limitations of these studies include 

sample size, particularly for specimens from endometriosis patients without pain, as most 

endometriosis patients were symptomatic. Nevertheless, we are confident in the findings 

presented here. There is clear evidence for the role of PF-based ox-LDLs in endometriosis-

associated pain as well as some downstream targets of these molecules. The micronome and 

epigenetic profile of endometriosis patients with pain could also hold a key to effective 

treatment. In the future, it would be ideal to consider antioxidant, miRNA, and/or EZH2 inhibitor 

therapy in conjunction with NSAIDs. Further studies could investigate the effectiveness of these 

options in an animal model. Certainly there is a lot of promise in the findings presented here. 

 

Figure 5.1: Overview of the ox-LDL-triggered mechanism of miRNAs in the peritoneal 
cavity of endometriosis patients. In the presence of oxidized LDLs, a downregulation of 
miRNAs leads to an overexpression of inflammatory and nociceptive genes. This triggers the 
release of additional chemokines and exacerbation of the inflammatory state of the cavity. 
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